Земля – колыбель человечества, но нельзя вечно жить в колыбели
Эту знаменитую фразу К.Э.Циолковского не забывают и по сей день. NASA, ESA, Роскосмос, SpaceX и множество других космических компаний отправляют автоматические миссии на другие планеты, запускают людей в космос и стремятся воплотить в жизнь слова Константина Эдуардовича.
Но что делать, если разработка новой ракеты занимает долгое время, а запустить ее хочется здесь и сейчас? Тогда стоит заняться ракетомоделированием и самим построить и запустить ракету мечты. А о своем опыте проектирования ракет я с удовольствием вам расскажу в этой статье.
Вступление
Всем привет! В этой серии статей я хотел бы поделиться с вами моим опытом разработки и запусков моделей ракет, рассказать о своих первых неудачах и головокружительных успехах, о том как надо делать и как не надо. Я не буду вдаваться в подробности того, как построить ракету, потому что в интернете есть много гайдов по этой теме, а сделаю упор именно на личный опыт, дабы уберечь вас от моих ошибок и показать несколько моих интересных находок и решений.
Итак,
SiriusSat-1 и SiriusSat-2. Ручка нужна для того, чтобы космонавт держал спутник
В общем на этой смене я и заразился тематикой космоса. Потом в 10 классе мне пришла в голову идея собрать свою ракету с какой-нибудь электроникой.
Первые попытки собрать движок
Сердцем любой ракеты является ее двигатель, поэтому сперва нужно было собрать его. Среди ракетомоделистов очень популярно карамельное топливо, из-за того, что оно легко в изготовлении и его компоненты (сахарная пудра и калиевая селитра) можно найти в любом городе.
Схема простейшего ТТРД . Как видно, камеры сгорания как таковой нет, топливо сгорает в баке и выпускает струю газа через сопло
Калиевую селитру купил в ближайшем магазине удобрений, а сахарную пудру в продуктовом магазине. На тот момент надпись N — 13,6% и K2O — 46% меня не смутила, но из-за нее потом было очень много проблем, о которых я расскажу чуть позже.
Для изготовления корпуса мне понадобилась пластиковая водопроводная труба длиной 100мм и диаметром 10 мм, бентонит (наполнитель для кошачьего туалета), чтобы сделать заглушки и для утрамбовки самого топлива нужно было найти любую палку, свободно входящую в двигатель. Селитру, бентонит и сахарную пудру я на всякий случай по отдельности перемолол в ступе. Затем смешал калиевую селитру и пудру в соотношении 70% к 30%. Теперь необходимо было забить все компоненты в трубу следующим образом:
- Засыпаем в трубу ложку перемолотого бентонита
- Забиваем бентонитовую заглушку примерно на 10мм, при необходимости досыпаем бентонит. Важно плотно его утрамбовать, чтобы он не крошился и не высыпался из трубы
- Утрамбовываем топливо примерно на 80мм. Его также нужно утрамбовывать плотно, по максимуму заполняя отведенное ему пространство в трубе. Чем больше топлива, тем больше тяга
- Забиваем последнюю бентонитовую заглушку до конца трубы, аналогичным образом, как и первую
- Высверливаем по центру на малой скорости в любой из заглушек отверстие глубиной примерно 50-70 мм. Так мы делаем своеобразное сопло
Серые части — бентонитовые заглушки, по центру — топливо
Для поджигания двигателя я сделал бикфордов шнур. Джутовую веревку отварил в растворе карамельного топлива, концентрацию взяв на глаз, примерно 2-3 чайных ложки на стакан воды. После варки необходимо дать шнуру высохнуть, и если пропорции раствора топлива были правильными, то на веревке будет белый налет карамельки. Двигатель и шнур для его поджига были готовы, а это значит, что предстояло провести его прожиг.
К сожалению фотографий первого двигателя и видео его испытаний у меня нет, но по итогу он не взлетел, но знатно дымился на стартовом столе.
Выводы:
- Температура горения была высокой, из-за чего начала плавиться пластиковая труба, и было решено, что корпуса следующих движков нужно делать из металла
- Сопло постоянно забивалось остатками продуктов горения, из-за чего могло повыситься давление в двигателе и ракета просто взорвалась бы, а rapid unscheduled disassembly никому не нужна. На тот момент я подумал, что это из-за неправильной пропорции селитры и из-за того, что сахарная пудра была не чистой, поэтому в следующих движках решил поэкспериментировать с пропорциями и заменить сахарную пудру на чистый сахар
Таким образом, мой первый опыт двигателестроения хоть и выглядел печальным, но меня он подстегнул двигаться дальше в этом направлении и узнавать что-то новое, потому что я очень хотел запустить свою ракету!
It's alive!
Покопавшись в интернете, я примерно понял в чем была проблема первого движка. Из-за трамбовки топливо распределялось неравномерно, в нем образовывались полости, и оно было неоднородно из-за чего процесс горения был очень вялым и вместо ракеты получилась хорошая дымовая шашка. Решение проблемы было простое — забить в трубу сваренное карамельное топливо. В качестве корпуса взял металлическую штангу для ванной и решил поэкспериментировать с пропорциями топлива и с добавкой оксида железа 3 (то есть обычной ржавчины), потому что он должен был увеличить скорость горения.
Примеры чистого карамельного топлива и с добавлением ржавчины. Источник
Движки я сделал поменьше, так как не видел смысла в изготовлении полноразмерного варианта, так же, как и не видел смысла в заглушках и сопле, на скорость горения топлива повлиять они не должны были, потому что все испытуемые были в равных условиях окружающей среды.
Прежде чем варить топливо, поговорим о технике безопасности, ведь карамелька легко воспламеняется и горит очень резво. Варить топливо нужно только на электрической плите, на газовой плите или любом другом источнике открытого огня готовить топливо нельзя. Кстати, в недавнем взрыве склада пиротехники в Бейруте по официальным данным воспламенилась именно селитра, так что будьте крайне осторожны при варке.
Топливо варил на электрической плите в блиннице до цвета и консистенции сгущенки. Блинница тем хороша, что в ней все ингредиенты равномерно нагреваются и не пригорают.
В итоге у меня получилось несколько подопытных:
- Движки с перемолотым в ступке и сваренным карамельным топливом
- Движки с измельченным в кофемолке и сваренным карамельным топливом
- Движки с измельченным в кофемолке и сваренным карамельным топливом с добавлением 1% оксида железа 3
Теперь необходимо было провести испытания движков. В спойлерах написано процентное соотношение ингредиентов в формате Селитра/Сахар/Ржавчина(если есть), а внутри прикреплены гифки самих прожигов.
Выводы:
- В этот раз все движки загорелись и горели они очень хорошо, что конечно же порадовало
- Ржавчина увеличивает скорость горения. Для сравнения двигатель 55/45 горел примерно 35 сек, а 54/45/1 уже 26 сек;
- Измельчение в кофемолке существенно не прибавило скорости горения
- Даже с заменой сахара в двигателях оставалось много не сгоревшего вещества (черное и белое вещество в “бочонках” на последней фотографии), состав которого был не известен
В общем, топливо загорелось, осталось решить, делать ли на нем ракету, или искать другое решение.
Что в итоге?
А в итоге у нас плохо работающие движки. Основная их проблема — неполное сгорание топливной смеси (о последствиях этого я писал выше). Также подкачала и скорость горения. И вот тут-то всплывает злополучная надпись N — 13,6% и K2O — 46% на упаковке селитры, потому что, скорее всего калиевая селитра для удобрений нечистая, и оставшиеся 40,4% это какие-нибудь примеси, которые и стали причиной плохой работы двигателей.
Если вы смотрели недавнюю серию роликов Амперки Ракета против Лехи, то вы заметили, что они использовали химически чистую калиевую селитру. Благодаря ей у них прогорело все топливо, да и скорость горения была выше (2,85 мм/сек против моих 1-1,25 мм/сек). Ну и еще одним минусом самодельных движков является то, что неизвестна их тяга, а я в будущем хотел бы рассчитывать параметры полета ракеты.
По итогу могу сделать вывод, что на калиевой селитре для удобрений движок не построишь. В общем, на такой грустной ноте я закончил разработку своих движков, и стал искать тех, кто делает и продает готовые движки.
Строим ракету
Двигатели я купил на сайте Real Rockets. Так как вместе с этими двигателями поставляется и электрический воспламенитель, то нужно было собрать пульт для запуска, ну и саму ракету конечно же. В том же магазине приобрел картонные трубы для корпуса.
На просторах интернета нашел схему для пульта и немного переделал ее, чтобы от прозвонки случайно не зажегся движок, и в итоге схема получилась такой:
Корпус сделал из ПВХ листов, внутри разместил спаянную схему, провода к воспламенителю (на схеме R2) вывел на зажимы. К проводу зажигания припаял крокодильчики, которые и подключались к воспламенителю.
Внутренности пульта для запуска
Собранный пульт вместе с проводом зажигания
Ну и как любую космическую систему, пульт необходимо было испытать, да и неплохо было бы посмотреть как вообще работают готовые движки.
Чтобы ракета летела вертикально вверх я решил спроектировать ее в программе Open Rocket, а затем напечатать на 3D принтере все детали. С помощью функции оптимизации ракеты я подобрал форму и размеры обтекателя и стабилизаторов исходя из размеров картонной трубы, обтекателя (в него я хотел установить альтиметр, о котором расскажу в следующей части), массы и тяги двигателя и его крепления. Но сперва необходимо было добавить используемый движок.
Чертеж ракеты в Open Rocket
- Находим кривую тяги двигателя, в моем примере мы будем добавлять двигатель РД1-20-5 от Real Rockets
"
Кривая тяги двигателя РД1-20-5
- Скачиваем программу ThrustCurve Tracer для рисования новой кривой тяги
- Открываем программу и жмем кнопку Open Image в левом верхнем углу и выбираем фотографию кривой тяги нашего двигателя
- Жмем кнопку Setup Grid и настраиваем оси следующим образом
- В X axis вписываем начальное и конечное значение времени, в моем случае 0 — 1.2 с
- В X sub-subdivisions вписываем число вертикальных линий между нулем и конечным временем, в моем случае 2
- В Y axis аналогично X axis только вписываем значения тяги, в моем случае 0 — 30 Н
- В Y axis sub-subdivisions аналогично X axis sub-subdivisions только вписываем количество горизонтальных линий, в моем случае 2
- Выравниваем наложенную сетку с сеткой фотографии
- Жмем кнопку Draw points и начинаем ставить точки на кривой. Вы увидите, что их будет соединять красная линия, которая и должна совпадать с кривой. Вы можете ставить точки в произвольном порядке, главное чтобы последняя точка была на нулевом значении тяги (просто на этом времени тыкните мышкой куда-нибудь за нижнюю границу сетки)
- Если вы правильно расставили точки, то снизу увидите галочку
У меня получилось вот так, но вы можете сделать кривую точнее
- Жмем кнопку Motor Info и вписываем требуемую информацию о двигателе
- Когда все готово, остается нажать на Save Data и программа сохранит данные о двигателе в файле с расширением .eng
- Этот файл нам необходимо вставить в папку по следующему пути C:\Users\username\AppData\Roaming\OpenRocket\ThrustCurves
Готово! Теперь в списке движков появится и ваш двигатель.
Добавить свой материал тоже просто. Для этого в разделе материалы (Правка -> Настройки -> Материалы) нажимаем Новый и добавляем данные о материале. Если вы так же, как и я печатаете детали на 3D принтере, то плотность при данном заполнении пластиком можно узнать, вспомнив школьные лабораторные работы по физике: в мерный стакан наливаем воды, опускаем деталь и по разности объемов находим объем детали, на весах измеряем массу детали, делим второе на первое и получаем плотность.
В параметрах самих стабилизаторов и обтекателя выбираем наш материал и начинаем их оптимизировать. Конечно, иногда программа выдает страшные формы деталей, поэтому нужно ограничивать максимальные и минимальные значения, которые вы оптимизируете.
Также не стоит забывать о стабильности, потому что от нее зависит, завалится ли на бок ваша ракета во время полета или полетит строго вверх. Если не вдаваться в физические формулы, то стабильность — это расстояние в диаметрах корпуса (калибрах) от центра давления до центра тяжести. Open Rocket умная программа и за нас рассчитывает их положение, поэтому нам остается только следить за значением стабильности. В идеале стабильность вашей ракеты должна быть 2-3 калибра, поэтому в оптимизации ракеты не забываем поставить ограничения и на эту характеристику.
Когда форма стабилизаторов и обтекателя были рассчитаны, предстояло их смоделировать и отправить на печать. Также я смоделировал и крепление для двигателя.
Боковой разрез ракеты
Вперед на полигон!
Когда обе ракеты были собраны, настало время их запустить! В роли стартового стола выступал стальной стержень длиною 1500 мм, воткнутый в землю. Ракета устанавливалась на него с помощью направляющих (листы бумаги, скрученные в трубочки).
Первый запуск 3D печатных ракет одновременно был смешным и страшным. Как оказалось, двигатели были бракованные, из-за чего в небо взлетела
Отломался один стабилизатор и порвался парашют
Отломанный стабилизатор приклеил на суперклей
и укрепил с помощью папье-маше, заменил систему спасения
С отремонтированной ракетой и новыми двигателями мы снова отправились на полигон. В этот раз удача была на нашей стороне и обе ракеты взлетели в воздух и мягко приземлились, даже неоднократно.
Заключение
В конце я хотел бы сказать, что на простых запусках ракет я не хочу останавливаться. Одна из моих ракет уже летала вместе с альтиметром, о разработке которого я расскажу в следующей статье. Сейчас же я делаю бортовую камеру, которую планирую установить на новую ракету и запустить уже на более мощных двигателях РД1-30-5.
А на этом у меня:
Спасибо за внимание!
Maxim_Q
Вы пробовали найти в качастве топлива что-то по лучше? Пусть и сложней купить зато эффект будет намного лучше. Я вижу вариантов просто масса: Ракетное топливо
IlorDash Автор
Да, как вариант можно было бы найти чистую селитру в хим магазинах, но я не нашел чистых реактивов в своем городе и хотел побыстрее взлететь, поэтому и решил купить готовые движки
Alexus819
если вы не в бейруте конечно.