1. Flask
Это микро-фреймворк, написанный на Python. Он не имеет валидаций для форм и уровня абстракции базы данных, но позволяет вам использовать сторонние библиотеки для общих функций. И именно поэтому это микро-фреймворк. Flask предназначен для простого и быстрого создания приложений, а также является масштабируемым и легким. Он основан на проектах Werkzeug и Jinja2. Вы можете узнать больше о нем в последней статье DataFlair о Python Flask.
2. Keras
Keras — нейросетевая библиотека с открытым исходным кодом, написанная на Python. Она удобна для пользователя, модульная и расширяемая, а так же может работать поверх TensorFlow, Theano, PlaidML или Microsoft Cognitive Toolkit (CNTK). В Keras есть все: шаблоны, целевые и передаточные функции, оптимизаторы и многое другое. Он также поддерживает сверточные и рекуррентные нейронные сети.
Работа над последним проектом с открытым исходным кодом на основе Keras — Классификация рака молочной железы.
Статья переведена при поддержке компании EDISON Software, которая разрабатывает систему диагностики хранилища документов Vivaldi, а также инвестирует в стартапы.
3. SpaCy
Это библиотека ПО с открытым исходным кодом, которая занимается обработкой естественного языка (NLP) и написана на Python и Cython. В то время как NLTK больше подходит для обучения и исследовательских целей, работа spaCy заключается в предоставлении ПО для производства. Кроме того, Thinc — библиотека машинного обучения spaCy, в которой представлены модели CNN для тегов части речи, парсинга зависимостей и распознавания именованных объектов.
4. Sentry
Sentry предлагает хостинг мониторинга ошибок с открытым исходным кодом, чтобы вы могли обнаруживать и сортировать ошибки в режиме реального времени. Просто установите SDK для вашего языка(ов) или фреймворка(ов) и начните работу. Он позволяет фиксировать необработанные исключения, изучать трассировку стека, анализировать влияние каждой проблемы, отслеживать ошибки в различных проектах, назначать проблемы и многое другое. Использование Sentry означает меньшее количество ошибок и больше отправляемого кода.
5. OpenCV
OpenCV — это библиотека компьютерного зрения и машинного обучения с открытым исходным кодом. Библиотека имеет более 2500 оптимизированных алгоритмов для задач компьютерного зрения, таких как обнаружение и распознавание объектов, классификация различных видов человеческой деятельности, отслеживание движений с помощью камеры, создание трехмерных моделей объектов, сшивание изображений для получения изображений с высоким разрешением и множество других задач. Библиотека доступна для многих языков, таких как Python, C ++, Java и т.д.
Количество звезд на Github: 39585
Вы уже работали над каким-либо проектом OpenCV? Вот один — Проект определения пола и возраста
6. Nilearn
Это модуль для быстрой и простой реализации статистического обучения на данных NeuroImaging. Он позволяет использовать scikit-learn для многомерной статистики для прогнозного моделирования, классификации, декодирования и анализа связности. Nilearn является частью экосистемы NiPy, которая представляет собой сообщество, посвященное использованию Python для анализа данных нейровизуализации.
Количество звезд на Github: 549
7. scikit-Learn
Scikit-learn — это еще один питонский проект с открытым исходным кодом. Это очень известная библиотека машинного обучения для Python. Часто используемый с NumPy и SciPy, SciPy предлагает классификацию, регрессию и кластеризацию — он поддерживает SVM (Support Vector Machines), случайные леса, градиентное ускорение, k-средства и DBSCAN. Эта библиотека написана на языках Python и Cython.
Количество звезд на Github: 37,144
8. PyTorch
PyTorch — это еще одна открытая библиотека машинного обучения, написанная на Python и для Python. Она основана на библиотеке Torch и отлично подходит для таких областей, как компьютерное зрение и обработка естественного языка (NLP). У него также есть C++ фронтенд.
Среди многих других особенностей PyTorch предлагает две высокоуровневые:
- Тензорные вычисления с сильным ускорением с помощью GPU
- Глубокие нейронные сети
Количество звезд на Github: 31 779
9. Librosa
Librosa — одна из лучших python библиотек для анализа музыки и аудио. Он содержит необходимые компоненты, которые используются для получения информации из музыки. Библиотека хорошо документирована и содержит несколько руководств и примеров, которые облегчат выполнение вашей задачи.
Количество звезд на Github: 3107
Реализация проекта Python с открытым исходным кодом и Librosa — распознавание эмоций речи.
10. Gensim
Gensim — это библиотека Python для моделирования тем, индексации документов и поиска сходства с крупными корпорациями. Он нацелен на НЛП и информационно-поисковые сообщества. Gensim — сокращение от «генерировать подобное». Ранее он создавал короткий список статей, похожих на данную статью. Gensim понятен, эффективен и масштабируем. Gensim реализует эффективную и простую реализацию неконтролируемого семантического моделирования из простого текста.
Количество звезд на Github: 9 870
11. Django
Django — фреймворк Python высокого уровня, которая поощряет быстрое развитие и верит в принцип DRY (не повторяйся). Это очень мощный и наиболее широко используемый фреймворк для Python. Он основан на паттерне MTV (Model-Template-View).
Количество звезд на Github: 44 214
12. Face recognition
Face recognition — это популярный проект на GitHub. Он легко распознает лица и манипулирует ими с помощью Python / командной строки и использует для этого самую простую в мире библиотеку распознавания лиц. При этом используется dlib с глубоким обучением для обнаружения лиц с точностью 99,38% в тесте Wild benchmark.
Количество звезд на Github: 28,267
13. Cookiecutter
Cookiecutter — это утилита командной строки, которую можно использовать для создания проектов из шаблонов (cookiecutters). Одним из примеров может быть создание пакетного проекта из шаблона пакетного проекта. Это кросс-платформенные шаблоны, и шаблоны проектов могут быть на любом языке или в любом формате разметки, например Python, JavaScript, HTML, Ruby, CoffeeScript, RST и Markdown. Он также позволяет использовать несколько языков в одном и том же шаблоне проекта.
Количество звезд на Github: 10 291
14. Pandas
Pandas — это библиотека анализа данных и манипуляций с ними для Python, предлагающая маркированные структуры данных и статистические функции.
Количество звезд на Github: 21,404
Python проект с открытым исходным кодом, чтобы попробовать Pandas — обнаружение болезни Паркинсона
15. Pipenv
Pipenv обещает быть production-ready инструментом, направленным на то, чтобы принести лучшее из всех упаковочных миров в мир Python. Его терминал имеет красивые цвета и объединяет Pipfile, pip и virtualenv в одну команду. Он автоматически создает и управляет виртуальной средой для ваших проектов и предоставляет пользователям простой способ настройки рабочей среды.
Количество звезд на Github: 18,322
16. SimpleCoin
Это реализация Blockchain для криптовалюты, созданная на Python, но она проста, небезопасна и неполна. SimpleCoin не предназначен для производственного использования. Не для производственного использования, SimpleCoin предназначен для образовательных целей и только для того, чтобы сделать рабочую цепь блокчейн доступной и упростить ее. Она позволяет сохранять добытые хэши и обменивать их на любую поддерживаемую валюту.
Количество звезд на Github: 1343
17. Pyray
Это библиотека 3D-рендеринга, написанная на ванильном Python. Он визуализирует 2D, 3D, объекты и сцены более высокого размера в Python и анимацию. Он находит нас в области созданных видео, видеоигр, физических симуляций и даже красивых картинок. Требования для этого: PIL, numpy и scipy.
Количество звезд на Github: 451
18. MicroPython
MicroPython — это Python для микроконтроллеров. Это эффективная реализация Python3, которая поставляется со многими пакетами из стандартной библиотеки Python и оптимизирована для работы на микроконтроллерах и в стесненных условиях. Pyboard — это небольшая электронная плата, на которой MicroPython работает на голом металле, поэтому она может контролировать все виды электронных проектов.
Количество звезд на Github: 9,197
19. Kivy
Kivy — это библиотека Python для разработки мобильных приложений и других мультитач-приложений с естественным пользовательским интерфейсом (NUI). Она имеет графическую библиотеку, несколько вариантов виджетов, промежуточный язык Kv для создания собственных виджетов, поддержку мыши, клавиатуры, TUIO и событий мультисенсорного ввода. Это библиотека с открытым исходным кодом для быстрой разработки приложений с инновационными пользовательскими интерфейсами. Он кросс-платформенный, дружелюбный к бизнесу и обладает GPU-ускорением.
Количество звезд на Github: 9 930
20. Dash
Dash by Plotly — это фреймворк веб-приложений. Построенный поверх Flask, Plotly.js, React и React.js, он позволяет нам использовать Python для построения приборных панелей. Он обеспечивает работу моделей Python и R в масштабе. Dash позволяет создавать, тестировать, развертывать и составлять отчеты без использования DevOps, JavaScript, CSS или CronJobs. Dash производительный, настраиваемый, легковесный и легко управляемый. Так же имеет открытый исходный код.
Количество звезд на Github: 9,883
21. Magenta
Magenta — это исследовательский проект с открытым исходным кодом, который фокусируется на машинном обучении как инструменте в творческом процессе. Это позволяет создавать музыку и искусство с помощью машинного обучения. Magenta — библиотека Python на базе TensorFlow, с утилитами для работы с исходными данными, использования ее для обучения машинных моделей и создания нового контента.
22. Маска R-CNN
Это реализация маски R-CNNN на Python 3, TensorFlow и Keras. Модель берет каждый экземпляр объекта на растре и создает для него ограничительные рамки и маски сегментации. В нем используется сеть Feature Pyramid Network (FPN) и магистраль ResNet101. Код легко расширить. Этот проект также предлагает набор данных Matterport3D о реконструированных 3D пространствах, захваченных заказчиками…
Количество звезд на Github: 14 055
23. Модели TensorFlow
Это репозиторий с различными моделями, реализованными в TensorFlow — официальных и исследовательских моделях. Он также имеет образцы и учебные пособия. Официальные модели используют высокоуровневые API TensorFlow. Исследовательские модели — это модели, реализованные в TensorFlow исследователями для их поддержки или поддержки по вопросам и получения запросов.
Количество звезд на Github: 57 745
24. Snallygaster
Snallygaster — это способ организации проблем с проектными досками. Благодаря этому вы можете настроить панель управления проектами на GitHub, оптимизировать и автоматизировать рабочий процесс. Он позволяет сортировать задачи, планировать проекты, автоматизировать рабочий процесс, отслеживать прогресс, делиться статусом и, наконец, завершать. Snallygaster может сканировать на наличие секретных файлов на HTTP серверах — он ищет файлы, доступные на веб-серверах, которые не должны быть общедоступными и могут представлять угрозу безопасности.
Количество звезд на Github: 1 477
25. Statsmodels
Это пакет Python, который дополняет scipy для статистических вычислений, включая описательную статистику, а также оценки и выводы для статистических моделей. Для этого у него есть классы и функции. Он также позволяет нам проводить статистические тесты и исследования статистических данных.
Количество звезд на Github: 4 246
26. WhatWaf
Это расширенный инструмент обнаружения брандмауэра, который мы можем использовать, чтобы понять, присутствует ли брандмауэр веб-приложения. Он обнаруживает брандмауэр в веб-приложении и пытается обнаружить один или несколько обходных путей для него на указанной цели.
Количество звезд на Github: 1300
27. Chainer
Chainer — это среда глубокого обучения, ориентированная на гибкость. Он базируется на Python и предлагает дифференцированные API, основанные на подходе define-by-run. Chainer также предлагает объектно-ориентированные API высокого уровня для построения и обучения нейронных сетей. Это мощная, гибкая и интуитивно понятная структура для нейросетей.
Количество звезд на Github: 5,054
28. Rebound
Rebound — инструмент командной строки. Когда вы получаете сообщение об ошибке компилятора, он немедленно получает результаты из переполненного стека. Чтобы использовать это, вы можете использовать команду rebound для выполнения вашего файла. Это один из 50 самых популярных проектов с открытым исходным кодом Python 2018 года. Кроме того, он требует Python 3.0 или выше. Поддерживаемые типы файлов: Python, Node.js, Ruby, Golang и Java.
Количество звезд на Github: 2913
29. Detectron
Detectron выполняет современное обнаружение объектов (также реализует маску R-CNN). Это программное обеспечение Facebook AI Research (FAIR), написанное на Python и работающее на платформе Caffe2 Deep Learning. Цель Detectron — предоставить высококачественную и высокопроизводительную кодовую базу для исследования обнаружения объектов. Он является гибким и реализует следующие алгоритмы — маска R-CNN, RetinaNet, более быстрый R-CNN, RPN, быстрый R-CNN, R-FCN.
Количество звезд на Github: 21 873
30. Python-fire
Это библиотека для автоматической генерации CLI (интерфейсов командной строки) из (любого) объекта Python. Он также позволяет вам разрабатывать и отлаживать код, а также исследовать существующий код или превращать чужой код в CLI. Python Fire облегчает переход между Bash и Python, а также облегчает использование REPL.
Количество звезд на Github: 15 299
31. Pylearn2
Pylearn2 — это библиотека машинного обучения, построенная в основном на базе Theano. Ее цель — облегчить исследование ML. Позволяет писать новые алгоритмы и модели.
Количество звезд на Github: 2681
32. Matplotlib
Matplotlib — это библиотека 2D-черчения для Python — она ??генерирует качественные публикации в разных форматах.
Количество звезд на Github: 10,072
33. Theano
Theano — это библиотека для манипулирования математическими и матричными выражениями. Это также оптимизирующий компилятор. Theano использует NumPy-подобный синтаксис для выражения вычислений и компилирует их для работы на архитектурах CPU или GPU. Это библиотека машинного обучения Python с открытым исходным кодом, написанная на Python и CUDA и работающая в Linux, macOS и Windows.
Количество звезд на Github: 8,922
34. Multidiff
Multidiff разработан, чтобы облегчить понимание машинно-ориентированных данных. Он помогает просматривать различия между большим количеством объектов, выполняя различия между соответствующими объектами, а затем отображая их. Эта визуализация позволяет нам искать паттерны в собственных протоколах или необычных форматах файлов. Он также в основном используется для обратного проектирования и анализа двоичных данных.
Количество звезд на Github: 262
35. Som-tsp
Этот проект посвящен использованию самоорганизующихся карт для решения проблемы коммивояжера. Используя SOM, мы находим неоптимальные решения для проблемы TSP и используем для этого формат .tsp. TSP — это NP-полная проблема, и с ростом числа городов ее становится все труднее решать.
Количество звезд на Github: 950
36. Photon
Photon — это исключительно быстрый веб-сканер, разработанный для OSINT. Он может получать URL-адреса, URL-адреса с параметрами, сведения о Intel, файлы, секретные ключи, файлы JavaScript, совпадения с регулярными выражениями и субдомены. Извлеченную информацию затем можно сохранить и экспортировать в формате json. Photon гибкий и гениальный. Вы также можете добавить некоторые плагины к нему.
Количество звезд на Github: 5714
37. Social Mapper
Social Mapper — это инструмент для картирования в социальных сетях, который коррелирует профили с использованием распознавания лиц. Он делает это на различных веб-сайтах в больших масштабах. Social Mapper автоматизирует поиск имен и фотографий в социальных сетях, а затем пытается точно определить и сгруппировать присутствие кого-либо. Затем он создает отчет для проверки человеком. Это полезно в индустрии безопасности (например, для фишинга). Он поддерживает платформы LinkedIn, Facebook, Twitter, Google Plus, Instagram, ВКонтакте, Weibo и Douban.
Количество звезд на Github: 2,396
38. Camelot
Camelot — это библиотека Python, которая помогает извлекать таблицы из файлов PDF. Она работает с текстовыми PDF-файлами, но не с отсканированными документами. Здесь каждая таблица является pandas DataFrame. Кроме того, вы можете экспортировать таблицы в .json, .xls, .html или .sqlite.
Количество звезд на Github: 2415
39. Lector
Это Qt-ридер для чтения электронных книг. Он поддерживает форматы файлов .pdf, .epub, .djvu, .fb2, .mobi, .azw / .azw3 / .azw4, .cbr / .cbz и .md. В Lector есть главное окно, просмотр таблицы, просмотр книг, просмотр без отвлечений, поддержка аннотаций, просмотр комиксов и окно настроек. Он также поддерживает закладки, просмотр профилей, редактор метаданных и встроенный словарь.
Количество звезд на Github: 835
40. m00dbot
Это бот Telegram для самостоятельного тестирования депрессии и тревоги.
Количество звезд на Github: 145
41. Manim
Это движок анимации для объяснения математических видеороликов, который можно использовать для создания точной анимации программным способом. Для этого он использует Python.
Количество звезд на Github: 13 491
42. Douyin-Bot
Бот, написанный на Python для приложения, похожего на Tinder. Разработчики из Китая.
Количество звезд на Github: 5,959
43. XSStrike
Это пакет обнаружения межсайтовых сценариев с четырьмя синтаксическими анализаторами, написанными от руки. Он также оснащен интеллектуальным генератором полезных данных, мощным механизмом фаззинга и невероятно быстрым поисковый модулем. Вместо того, чтобы вводить полезные данные и проверять их работу, как все остальные инструменты, XSStrike распознаёт ответ с помощью нескольких анализаторов и затем обрабатывает полезные данные, которые гарантированно будут работать с помощью контекстного анализа, интегрированного в механизм фаззинга.
Количество звезд на Github: 7050
44. PythonRobotics
Данный проект представляет собой сборник кода в алгоритмах Python-робототехники, а также алгоритмов автономной навигации.
Количество звезд на Github: 6,746
45. Google Images Download
Google Images Download — это программа Python для командной строки, которая ищет ключевые слова в изображениях Google и получает изображения для вас. Это небольшая программа без зависимостей, если вам нужно всего лишь загрузить до 100 изображений для каждого ключевого слова.
Количество звезд на Github: 5749
46. ??Trape
Позволяет отслеживать и выполнять интеллектуальные атаки социальной инженерии в режиме реального времени. Это помогает выяснить, как крупные интернет-компании могут получать конфиденциальную информацию и контролировать пользователей без их ведома. Trape также может помочь отследить киберпреступников.
Количество звезд на Github: 4256
47. Xonsh
Xonsh — это кросс-платформенный Unix-gazing язык командной строки и оболочки командной строки на базе Python. Это суперсет Python 3.5+ с дополнительными примитивами оболочки, такими как в Bash и IPython. Xonsh работает на Linux, Max OS X, Windows и других основных системах.
Количество звезд на Github: 3426
48. GIF для CLI
Для этого требуется GIF или короткое видео или запрос, а с помощью API-интерфейса Tenor GIF он преобразуется в анимированную графику ASCII. Он использует escape-последовательности ANSI для анимации и цвета.
Количество звезд на Github: 2,547
49. Cartoonify
Draw This — полароидная камера, способная рисовать мультфильмы. При этом используется нейронная сеть для распознавания объектов, набор данных Google Quickdraw, термопринтер и Raspberry Pi. Quick, Draw! — это игра Google, в которой игрокам предлагается нарисовать изображение объекта/идеи, а затем он пытается угадать, что он представляет, менее чем за 20 секунд.
Количество звезд на Github: 1760
50. Zulip
Zulip — это приложение для группового чата, работающее в режиме реального времени, а также продуктивное благодаря многопоточным разговорам. Многие компании из списка Fortune 500 и проекты с открытым исходным кодом используют его для чата в реальном времени, который может обрабатывать тысячи сообщений в день.
Количество звезд на Github: 10,432
51. YouTube-dl
Это программа командной строки, которая может загружать видео с YouTube и некоторых других сайтов. Он не привязан к конкретной платформе.
Количество звезд на Github: 55 868
52. Ansible
Это простая система автоматизации ИТ, которая может обрабатывать следующие функции: управление конфигурацией, развертывание приложений, инициализация облака, выполнение специальных задач, автоматизация сети и многоузловая оркестровка.
Количество звезд на Github: 39,443
53. HTTPie
HTTPie — это HTTP-клиент командной строки. Это упрощает взаимодействие CLI с веб-сервисами. Для команды http, она позволяет нам посылать произвольные HTTP запросы с простым синтаксисом, и получать цветной вывод. Мы можем использовать его для тестирования, отладки и взаимодействия с HTTP-серверами.
Количество звезд на Github: 43 199
54. Tornado Web Server
Это веб-фреймворк, асинхронная сетевая библиотека для Python. Он использует неблокирующие сетевые входы/выходы для масштабирования до более чем тысяч открытых соединений. Это делает его хорошим выбором для длинных запросов и WebSockets.
Количество звезд на Github: 18 306
55. Requests
Requests — это библиотека, которая позволяет легко отправлять HTTP/1.1 запросы. Вам не нужно вручную добавлять параметры к URL-адресам или кодировать данные PUT и POST.
Количество звезд на Github: 40 294
56. Scrapy
Scrapy — это быстрый высокоуровневый фреймворк для просмотра веб-страниц — вы можете использовать его для просмотра веб-сайтов с целью извлечения структурированных данных. Вы также можете использовать его для анализа данных, мониторинга и автоматизированного тестирования.
Количество звезд на Github: 34,493
Комментарии (16)
Neveil
27.11.2019 00:55Какие проекты читать в первую очередь? Если брать для самообразования качества кода.
resetme
27.11.2019 09:14В первую очередь Django, потом Flask, а потом хоть что из этого списка. Знание внутренностей Django очень пригодится в дальнейшей работе.
DaneSoul
28.11.2019 20:52ИМХО, лучше все же в обратном порядке:
Flask небольшой и не сложный, в нем намного быстрей разобраться, можно быстро начать применять и экспериментировать с простыми четкими задачами.
А Django огромный «комбайн» который надо копать долго и упорно и четко понимая где и как его применять.
quwy
27.11.2019 07:11Эээээ… Я конечно дико извиняюсь, но разве бывают проекты на питоне с закрытым исходным кодом?
deitry
27.11.2019 11:46+1Теоретически можно обфусцировать и распространять файлы, скомпилированные через тот же CPython. И, видимо, кто-то так и делает.
vilgeforce
27.11.2019 12:21Что тут делает OpenCV — не ясно, написана она на C/C++, а не на питоне.
dzsysop
27.11.2019 19:25После вашего комментария стал присматриваться к тексту более внимательно.
Photon — это исключительно быстрый веб-сканер, разработанный для OSINT. Он может получать URL-адреса, URL-адреса с параметрами, сведения о Intel, файлы, секретные ключи, файлы JavaScript,
сведения о Intel — интересно что это за утилита которая занимается таргетированным промышленным шпионажем?vilgeforce
27.11.2019 20:22Это я тоже заметил, но оставляю на совести автора. А вот назвать сишный проект питоньим…
vectorplus
27.11.2019 22:41Может, потому что у него питоний интерфейс есть? Я как-то использовал OpenCV, не зная ни бельмеса в С. Но я был в курсе, что он написан на сях.
QtRoS
27.11.2019 19:28Keras, кстати, теперь плавно трансформируется из мультибекэндного фреймворка в Tensorflow-only. Об этом пишут на странице проекта; во многом это связано с тем, что автор библиотеки теперь работает в Google.
vectorplus
27.11.2019 22:43Я работал только с тензорфло, поэтому керас для меня это просто фича тф с версии 2.0
:)QtRoS
27.11.2019 23:46А я вот застал времена, когда Keras и на Theano неплохо работал, периодически быстрее в разы, а порой и некоторые непонятные баги при этом исправлялись.
vectorplus
28.11.2019 00:00У нас народ раньше PyTorch в основном использовал, насколько я знаю, он считался более внятным и удобным для прототипирования в академии. Но я тогда даже сам питон не знал, занимался старым добрым анализом данных на R. А когда заинтересовался нейросетками, то уже в тф было практически всё под капотом, оставалось написать программу типа 'сделай мне хорошо'.
nikolay_karelin
28.11.2019 09:23Подборка интересная, но качество перевода ужасно… и не везде нормальные ссылки (например multidiff — это несколько вариантов библиотек разного назначения).
boojum
28.11.2019 14:5418. MicroPython — это «не проект на Python», а компактная реализация питона для микроконтроллеров (в том числе для «народного» esp8266).
quadroD
Возможно кому-то будет полезно. Сортировка проектов Apache по языкам программирования. Там есть в том числе и Python: projects.apache.org/projects.html?language