Всем привет! 

Однажды у руководства возник вопрос, готов ли я взять ответственность за качество прогнозов модели. 

С одной стороны вопрос простой и требует ответа «да/нет». С другой — сложилось понимание, что качество сильно зависит от того, как его рассчитать. Без формализации бизнес-метрики отвечать на этот вопрос очень не хотелось.

Так я столкнулся с культурой работы с данными в компании и услышал от менеджмента фразу «data-driven подход». Хорошую статью про этот подход написали X5 Tech.

Меня зовут Родион, я занимаюсь улучшением бизнес-процессов компаний с помощью данных. Сегодня хочу поделиться опытом внедрения машинного обучения: как компании работают с бизнес-метриками и данными, где в иерархии потребностей компании находится ML и как довести проект до реальной бизнес-пользы. 

Рождение ML

Многие компании осознают потенциальную ценность данных, но слабо представляют себе реальный процесс добычи ценности. Это приводит менеджмент к очевидному решению — нужно взять дашборд, вывести на него разные метрики, каждое утро на них смотреть, иногда делать отчеты об их изменении и причинах. С точки зрения бизнеса цель благая — измерять что-то, на что потом будем влиять.

С появлением такого дашборда хочется посмотреть на метрики и объяснить их колебания: мы ввели промо, из-за чего увеличился средний чек. В этот момент кто-то предлагает внедрить машинное обучение, ведь это так стильно, модно, молодежно. Идея манит своими перспективами — можно столько полезных вещей автоматизировать. 

Я наблюдал пробу пера аналитика, который в свободное время освоил инструментарий машинного обучения. По результатам его работы имеем презентацию с графиками о том, как изменились метрики после применения модели, и восхищенные комментарии про потенциал роста продаж. Иногда после такой презентации даже принимаются важные решения, фиксируются KPI в виде «рост выручки на 148%» и назначаются ответственные за достижение столь масштабной цели. Существует большая вероятность цель не достичь, но движение к ней будет «вопреки и изо всех сил». 

В этот момент давайте остановимся и попробуем понять возможные причины провала такой стратегии. Каждый описанный этап может проходить за неделю, а может длиться месяцами. На каждом этапе компания живет с мыслью, что обозначенный план действительно приведет ее к цели. Сложно было бы жить в убеждении, что текущие проекты бесполезны и не приведут к результатам. 

Может произойти так, что выручка действительно покажет рост на 148%, в этот момент усиливается вера в правильность избранного пути. Здесь важно понимать контекст менеджмента: в момент принятия решения о внедрении нового инструмента у нас всегда будет неполная информация. В каком-то смысле одна из функций менеджмента в том, чтобы принимать решения в состоянии неопределенности разной степени и нести за эти решения ответственность в разных формах. В этих условиях мы смотрим на презентацию с графиками и чувствуем в руках тяжесть чемодана с деньгами, который нам принесет машинное обучение. 

Такой момент я бы назвал моментом рождения ML в компании: мы уже потрогали новую технологию и даже сделали небольшой проект, надо продолжать! 

Жизнь с ML

Естественно, при принятии решения хочется быть уверенным в результатах, ведь мало кто готов отдавать на волю случая свою репутацию/положение/выручку и другие блага. Устранением неопределенности руководствуются, когда возникает идея внедрить дашборды, начинать измерять метрики «до-после» и внедрять ML. 

Сейчас мы подошли к вопросу потребностей компании. Ежедневно компании сталкиваются с рисками и неопределенностью, многие стремятся определить их, немногим это удается и еще меньше компаний стараются устранить риски там, где это возможно. Существует потребность в устранении неопределенности, закрыть которую можно в том числе с помощью данных. Потребность может не до конца осознаваться менеджментом, но от того она не перестает существовать. Эта же потребность толкает компании на внедрение data-driven подхода «так, как умеем», а вслед за «успешным» data-driven можно внедрить и ML. 

Теперь у нас есть несколько проектов с машинным обучением, а может быть, мы собрали целую команду ML-инженеров. Наступает эпоха «жизни с ML в компании». Эпоха надежд и веры в лучшее будущее. Каждый хочет прикоснуться к этому инструменту, возникает непреодолимое желание как можно чаще его использовать, появляется все больше и больше инициатив. Вслед множится количество проектов и через год-два их становится слишком много. Все это происходит с разной степенью системности. 

В результате часть проектов уходит в стол, часть продолжает работать, еще какую-то часть переделывают. 

Компании не нужен ML

И тут наступает сложный период в жизни компании. Как любой организм, компания при угрозе перераспределяет ресурсы в пользу своего выживания. А это значит, что  компании надо оценить «успешный успех» проектов с машинным обучением и понять, помогут ли они в будущем выживании. Такая оценка, вероятно, коснется почти всех проектов и, если компания будет смотреть на метрики «до-после», то угадать проект-жертву почти невозможно. Ведь большинство методов, применяемых во время оценки, мало чем отличаются от случайных. Проблему качественной оценки результата проекта мы обсудим в следующих статьях.

Этот этап жизни я бы назвал «смертью  ML в компании», когда из-за случайных колебаний «среднего чека» закрывается множество хороших проектов. 

Возможно, зрелая компания проведет работу над ошибками и поймет причины такой судьбы некоторых проектов. Но все это будет потом. А сейчас менеджмент осознает сумму убытков от проектов, которые «не взлетели», и выбирает курс без ML.  

Как же так получилось? 

Если посмотреть на ML как на инструмент для закрытия потребностей компании, то, на мой взгляд, данные и их качество находятся на первой ступени в иерархии потребностей. На второй ступени находится аналитика в широком смысле. На третьей — ML. И вся эта пирамида потребностей базируются на бизнес-процессах компании.  

Когда мы слышим про успехи внедрения ML «быстро и не дорого», это выглядит так:

Но эволюцию не обмануть. Неполное удовлетворение потребности низкого уровня приведет к невозможности удовлетворения более высокоуровневых потребностей. 

Мы можем сколь угодно долго и упорно строить дашборды, но какой в этом смысл, если данные ошибочны? Еще меньше смысла обретает машинное обучение в условиях, когда мы не можем оценить эффект от внедрения того или иного решения. И самое страшное, когда мы не имеем зрелых бизнес-процессов для управления проектами, решения принимаем случайно и не делаем работу над ошибками. 

К какому выводу я пришел?

Позвольте вашим проектам эволюционировать естественным образом без стероидов «эффективного менеджмента». Потратьте время на удовлетворение базовых потребностей и создавайте проекты на крепком фундаменте. В этом случае компания сможет получать реальную пользу от данных.

Два вечных вопроса: кто виноват и что делать? 

Про виноватых ответить не смогу, это тема отдельной статьи. 

Что делать? За каждую задачу в компании отвечают люди со своими убеждениями, страхами и надеждами. Это часто забывают, когда речь идет про построение бизнес-процессов, но человеческий фактор всегда будет служить частью культурной среды компании, а значит о ней стоит заботиться, прикладывать усилия к созданию и поддержанию зрелой культуры работы с данными в разных плоскостях. Это можно сделать разными способами, например через инфо-встречи с рассказами про данные, про лучшие практики работы с ними и, что более важно, про их влияние на цели людей, которые прикасаются к данным. 

Есть еще множество аспектов, которые не были освещены в этой статье и будут освещены в следующих. Дальше мы порассуждаем о том, как выявить места применения ML внутри компании, о важности командной работы и почему машинное обучение невозможно забыть. 

А как у тебя в компании оценивают проекты? Пиши в комментарии свою боль, говорят, от этого становится легче :)

P.S. Иногда я пишу возникающие мысли в тг-канал «Заметки дата-сатаниста»: https://t.me/my_datascience

Комментарии (3)


  1. Plesser
    26.01.2023 11:24

     Пиши в комментарии свою боль, говорят, от этого становится легче :)

    На предыдущем месте работы предложили возглавить направление машинного обучения. Романтика - строить с нуля, не какого легаси кода, повезло думал я. Мой романтический настрой закончился как только выяснилось что высшее руководство хочет видеть решение задач, по которым данных нет, а по тем данным по которым можно дать решение оно не заинтересовано. И вместо того что бы с одной стороны позволить нарастить собственные компетенции а заодно дать возможность собрать данные для моделей под их хотелки, оно сказало что машинное обучение это хайп и любой аналитик без него решит им их задачи.


    1. Rodion_CH Автор
      26.01.2023 13:40
      +1

      Да уж, знакомая ситуация. Наверно надо как-то объяснить, что в ML надо вкладываться. Но конечно проще назвать направление хайпом.

      Еще интересно, а аналитики в итоге что-то решили по этой задаче?)


      1. Plesser
        26.01.2023 15:15

        Конечно же нет :) Более того то направление так и осталось заброшенным