В апреле компания NVIDIA выпустила на рынок новый продукт — графический процессор малого форм-фактора RTX A4000 ADA, предназначенный для применения в рабочих станциях. Этот процессор пришел на смену A2000 и может быть использован для выполнения сложных задач, в том числе для научно-исследовательских и инженерных расчетов и для визуализации данных.

RTX A4000 ADA оснащена 6144 ядрами CUDA, 192 тензорами и 48 ядрами RT, оперативной памятью GDDR6 ECC VRAM объемом 20 Гб. Одно из ключевых преимуществ нового графического процессора — его энергоэффективность: RTX A4000 ADA потребляет всего 70 Вт, что снижает затраты на электроэнергию и уменьшает тепловыделение в системе. Графический процессор также позволяет управлять несколькими дисплеями благодаря подключению 4x Mini-DisplayPort 1.4a.

При сравнении графических процессоров RTX 4000 SFF Ada с другими устройствами того же класса можно отметить, что при работе в режиме одинарной точности данный продукт показывает производительность, аналогичную последнему поколению графического процессора RTX A4000, который потребляет вдвое больше энергии (140 Вт против 70 Вт). 

RTX 4000 SFF Ada построена на архитектуре Ada Lovelace и техпроцессе 5 нм. Это позволяет использовать ядра Tensor Core нового поколения и ядра трассировки лучей, которые значительно повышают производительность, обеспечивая более быструю и эффективную работу с трассировкой лучей и тензорными ядрами, чем RTX A4000. Кроме того, RTX 4000 SFF Ada упакован в небольшой корпус — длина карты 168 мм, толщина равна двум слотам расширения.

Улучшение ядер трассировки лучей обеспечивает эффективную работу в средах, где используется эта технология, таких как 3D-дизайн и рендеринг. Объем памяти нового GPU (20 Гб) позволяет справляться с большими средами.

Согласно заявлениям производителя, тензорные ядра четвертого поколения обеспечивают высокую производительность вычислений ИИ — двукратное увеличение производительности по сравнению с предыдущим поколением. Новые тензорные ядра поддерживают ускорение FP8. Эта особенность нового графического процессора может хорошо подойти тем, кто разрабатывает и развертывает модели ИИ в таких средах, как геномика и компьютерное зрение.

Также стоит отметить, что увеличение количества механизмов кодирования и декодирования делает RTX 4000 SFF Ada хорошим решением для мультимедийных рабочих нагрузок, таких как работа с видео.

Технические характеристики видеокарт NVIDIA RTX A4000 и RTX A5000, RTX 3090:

RTX A4000 ADA 

NVIDIA RTX A4000

NVIDIA RTX A5000

RTX 3090

Архитектура

Ada Lovelace

Ampere

Ampere

Ampere

Техпроцесс

5 нм

8 нм

8 нм

8 нм

Графический процессор

AD104

GA102

GA104

GA102

Количество транзисторов (млн)

35,800

17,400

28,300

28,300

Пропускная способность памяти (Гб/с)

280.0

448

768

936.2

Разрядность шины видеопамяти (бит)

160

256

384

384

Память GPU (Гб)

20

16

24

24

Тип памяти

GDDR6

GDDR6

GDDR6

GDDR6X

Ядра CUDA

6,144

6 144

8192

10496

Тензорные ядра

192

192

256

328

Ядра RT

48

48

64

82

SP perf (терафлопс)

19.2

19,2 

27,8

35,6 

RT Core performance (терафлопс)

44.3

37,4

54,2

69,5

Tensor performance (терафлопс)

306.8

153,4

222,2

285

Максимальная мощность (Вт)

70

140

230

350

Интерфейс

PCIe 4.0 x 16

PCI-E 4.0 x16

PCI-E 4.0 x16

PCIe 4.0 x16

Разъемы

4x Mini DisplayPort 1.4a

ДП 1.4 (4)

ДП 1.4 (4)

ДП 1.4 (4)

Форм-фактор

2 слота

1 слот

2 слота

2-3 слота

Программное обеспечение vGPU

нет

нет

есть неограниченно

есть с ограничениями

Nvlink

нет

нет

2x RTX A5000

есть

Поддержка CUDA

11.6

8.6

8.6

8.6

Поддержка VULKAN

1.3

есть

есть

есть, 1.2

Цена (руб.)

100 000

125 000 

220 000 

100 000

Описание тестовой среды

RTX A4000 ADA

RTX A4000

Процессор

AMD Ryzen 9 5950X 3.4GHz (16 cores)

OctaCore Intel Xeon E-2288G, 3,5 GHz

Оперативная память

4x 32 Gb DDR4 ECC SO-DIMM

2x 32 GB DDR4-3200 ECC DDR4 SDRAM 1600 МГц

Накопитель

1Tb NVMe SSD

Samsung SSD 980 PRO 1TB

Материнская плата

ASRock X570D4I-2T

Asus P11C-I Series

Операционная система 

Microsoft Windows 10

Microsoft Windows 10

Результаты в тестах

V-Ray 5 Benchmark

Points scored
Points scored
Points scored
Points scored

Тесты V-Ray GPU CUDA и RTX позволяют измерить относительную производительность GPU при рендеринге. GPU RTX A4000 незначительно уступает по производительности RTX A4000 ADA (4% и 11% соответственно). 

Машинное обучение

«Собаки против кошек»

Для сравнения производительности GPU для нейросетей мы используем набор данных «Собаки против кошек» — тест анализирует содержимое фотографии и различает, изображена на фото кошка или собака. Все необходимые исходные данные находятся здесь. Мы запускали этот тест на разных GPU и в различных облачных сервисах и получили следующие результаты:

Points scored
Points scored

В этом тесте результат RTX A4000 ADA незначительно превзошел RTX A4000 (9%), но следует помнить о небольшом размере и низком энергопотреблении нового GPU.

AI-Benchmark

AI-Benchmark позволяет измерить производительность устройства во время выполнения задачи вывода AI-моделей. Единицы измерения могут зависеть от теста, но обычно это количество операций в секунду (OPS) или количество изображений в секунду (FPS).

Points scored
Points scored

RTX A4000

RTX A4000 ADA

1/19. MobileNet-V2

1.1 — inference | batch=50, size=224x224: 38.5 ± 2.4 ms

1.2 — training | batch=50, size=224x224: 109 ± 4 ms

1.1 — inference | batch=50, size=224x224: 53.5 ± 0.7 ms

1.2 — training | batch=50, size=224x224: 130.1 ± 0.6 ms

2/19. Inception-V3

2.1 — inference | batch=20, size=346x346: 36.1 ± 1.8 ms

2.2 — training | batch=20, size=346x346: 137.4 ± 0.6 ms

2.1 — inference | batch=20, size=346x346: 36.8 ± 1.1 ms

2.2 — training | batch=20, size=346x346: 147.5 ± 0.8 ms

3/19. Inception-V4

3.1 — inference | batch=10, size=346x346: 34.0 ± 0.9 ms

3.2 — training | batch=10, size=346x346: 139.4 ± 1.0 ms

3.1 — inference | batch=10, size=346x346: 33.0 ± 0.8 ms

3.2 — training | batch=10, size=346x346: 135.7 ± 0.9 ms

4/19. Inception-ResNet-V2

4.1 — inference | batch=10, size=346x346: 45.7 ± 0.6 ms

4.2 — training | batch=8, size=346x346: 153.4 ± 0.8 ms

4.1 — inference batch=10, size=346x346: 33.6 ± 0.7 ms

4.2 — training batch=8, size=346x346: 132 ± 1 ms

5/19. ResNet-V2-50

5.1 — inference | batch=10, size=346x346: 25.3 ± 0.5 ms

5.2 — training | batch=10, size=346x346: 91.1 ± 0.8 ms

5.1 — inference | batch=10, size=346x346: 26.1 ± 0.5 ms

5.2 — training | batch=10, size=346x346: 92.3 ± 0.6 ms

6/19. ResNet-V2-152

6.1 — inference | batch=10, size=256x256: 32.4 ± 0.5 ms

6.2 — training | batch=10, size=256x256: 131.4 ± 0.7 ms

6.1 — inference | batch=10, size=256x256: 23.7 ± 0.6 ms

6.2 — training | batch=10, size=256x256: 107.1 ± 0.9 ms

7/19. VGG-16

7.1 — inference | batch=20, size=224x224: 54.9 ± 0.9 ms

7.2 — training | batch=2, size=224x224: 83.6 ± 0.7 ms

7.1 — inference | batch=20, size=224x224: 66.3 ± 0.9 ms

7.2 — training | batch=2, size=224x224: 109.3 ± 0.8 ms

8/19. SRCNN 9-5-5

8.1 — inference | batch=10, size=512x512: 51.5 ± 0.9 ms

8.2 — inference | batch=1, size=1536x1536: 45.7 ± 0.9 ms

8.3 — training | batch=10, size=512x512: 183 ± 1 ms

8.1 — inference | batch=10, size=512x512: 59.9 ± 1.6 ms

8.2 — inference | batch=1, size=1536x1536: 53.1 ± 0.7 ms

8.3 — training | batch=10, size=512x512: 176 ± 2 ms

9/19. VGG-19 Super-Res

9.1 — inference | batch=10, size=256x256: 99.5 ± 0.8 ms

9.2 — inference | batch=1, size=1024x1024: 162 ± 1 ms

9.3 — training | batch=10, size=224x224: 204 ± 2 ms

10/19. ResNet-SRGAN

10.1 — inference | batch=10, size=512x512: 85.8 ± 0.6 ms

10.2 — inference | batch=1, size=1536x1536: 82.4 ± 1.9 ms

10.3 — training | batch=5, size=512x512: 133 ± 1 ms

10.1 — inference | batch=10, size=512x512: 98.9 ± 0.8 ms

10.2 — inference | batch=1, size=1536x1536: 86.1 ± 0.6 ms

10.3 — training | batch=5, size=512x512: 130.9 ± 0.6 ms

11/19. ResNet-DPED

11.1 — inference | batch=10, size=256x256: 114.9 ± 0.6 ms

11.2 — inference | batch=1, size=1024x1024: 182 ± 2 ms

11.3 — training | batch=15, size=128x128: 178.1 ± 0.8 ms

11.1 — inference | batch=10, size=256x256: 146.4 ± 0.5 ms

11.2 — inference | batch=1, size=1024x1024: 234.3 ± 0.5 ms

11.3 — training | batch=15, size=128x128: 234.7 ± 0.6 ms

12/19. U-Net

12.1 — inference | batch=4, size=512x512: 180.8 ± 0.7 ms

12.2 — inference | batch=1, size=1024x1024: 177.0 ± 0.4 ms

12.3 — training | batch=4, size=256x256: 198.6 ± 0.5 ms

12.1 — inference | batch=4, size=512x512: 222.9 ± 0.5 ms

12.2 — inference | batch=1, size=1024x1024: 220.4 ± 0.6 ms

12.3 — training | batch=4, size=256x256: 229.1 ± 0.7 ms

13/19. Nvidia-SPADE

13.1 — inference | batch=5, size=128x128: 54.5 ± 0.5 ms

13.2 — training | batch=1, size=128x128: 103.6 ± 0.6 ms

13.1 — inference | batch=5, size=128x128: 59.6 ± 0.6 ms

13.2 — training | batch=1, size=128x128: 94.6 ± 0.6 ms

14/19. ICNet

14.1 — inference | batch=5, size=1024x1536: 126.3 ± 0.8 ms

14.2 — training | batch=10, size=1024x1536: 426 ± 9 ms

14.1 — inference | batch=5, size=1024x1536: 144 ± 4 ms

14.2 — training | batch=10, size=1024x1536: 475 ± 17 ms

15/19. PSPNet

15.1 — inference | batch=5, size=720x720: 249 ± 12 ms

15.2 — training | batch=1, size=512x512: 104.6 ± 0.6 ms

15.1 — inference | batch=5, size=720x720: 291.4 ± 0.5 ms

15.2 — training | batch=1, size=512x512: 99.8 ± 0.9 ms

16/19. DeepLab

16.1 — inference | batch=2, size=512x512: 71.7 ± 0.6 ms

16.2 — training | batch=1, size=384x384: 84.9 ± 0.5 ms

16.1 — inference | batch=2, size=512x512: 71.5 ± 0.7 ms

16.2 — training | batch=1, size=384x384: 69.4 ± 0.6 ms

17/19. Pixel-RNN

17.1 — inference | batch=50, size=64x64: 299 ± 14 ms

17.2 — training | batch=10, size=64x64: 1258 ± 64 ms

17.1 — inference | batch=50, size=64x64: 321 ± 30 ms

17.2 — training | batch=10, size=64x64: 1278 ± 74 ms

18/19. LSTM-Sentiment

18.1 — inference | batch=100, size=1024x300: 395 ± 11 ms

18.2 — training | batch=10, size=1024x300: 676 ± 15 ms

18.1 — inference | batch=100, size=1024x300: 345 ± 10 ms

18.2 — training | batch=10, size=1024x300: 774 ± 17 ms

19/19. GNMT-Translation

19.1 — inference | batch=1, size=1x20: 119 ± 2 ms

19.1 — inference | batch=1, size=1x20: 156 ± 1 ms

Результаты этого теста показывают, что производительность RTX A4000 незначительно (на 6%) выше, чем у RTX A4000 ADA. Однако, стоит отметить, что результаты тестов могут различаться в зависимости от конкретных задач и условий работы.

PyTorch

Результаты с RTX A 4000

Benchmarking

Model average train time (ms)

Training double precision type mnasnet0_5

62.995805740356445

Training double precision type mnasnet0_75

98.39066505432129

Training double precision type mnasnet1_0

126.60405158996582

Training double precision type mnasnet1_3

186.89460277557373

Training double precision type resnet18

428.08079719543457

Training double precision type resnet34

883.5790348052979

Training double precision type resnet50

1016.3950300216675

Training double precision type resnet101

1927.2308254241943

Training double precision type resnet152

2815.663013458252

Training double precision type resnext50_32x4d

1075.4373741149902

Training double precision type resnext101_32x8d

4050.0641918182373

Training double precision type wide_resnet50_2

2615.9953451156616

Training double precision type wide_resnet101_2

5218.524832725525

Training double precision type densenet121

751.9759511947632

Training double precision type densenet169

910.3225564956665

Training double precision type densenet201

1163.036551475525

Training double precision type densenet161

2141.505298614502

Training double precision type squeezenet1_0

203.14435005187988

Training double precision type squeezenet1_1

98.04857730865479

Training double precision type vgg11

1697.710485458374

Training double precision type vgg11_bn

1729.2972660064697

Training double precision type vgg13

2491.615080833435

Training double precision type vgg13_bn

2545.1631927490234

Training double precision type vgg16

3371.1953449249268

Training double precision type vgg16_bn

3423.8639068603516

Training double precision type vgg19_bn

4314.5153522491455

Training double precision type vgg19

4249.422650337219

Training double precision type mobilenet_v3_large

105.54619789123535

Training double precision type mobilenet_v3_small

37.6680850982666

Training double precision type shufflenet_v2_x0_5

26.51611328125

Training double precision type shufflenet_v2_x1_0

61.260504722595215

Training double precision type shufflenet_v2_x1_5

105.30067920684814

Training double precision type shufflenet_v2_x2_0

181.03694438934326

Inference double precision type mnasnet0_5

17.397074699401855

Inference double precision type mnasnet0_75

28.902697563171387

Inference double precision type mnasnet1_0

38.387718200683594

Inference double precision type mnasnet1_3

58.228821754455566

Inference double precision type resnet18

147.95727252960205

Inference double precision type resnet34

293.519492149353

Inference double precision type resnet50

336.44991874694824

Inference double precision type resnet101

637.9982376098633

Inference double precision type resnet152

948.9351654052734

Inference double precision type resnext50_32x4d

372.80876636505127

Inference double precision type resnext101_32x8d

1385.1624917984009

Inference double precision type wide_resnet50_2

873.048791885376

Inference double precision type wide_resnet101_2

1729.2765426635742

Inference double precision type densenet121

270.13323307037354

Inference double precision type densenet169

327.1932888031006

Inference double precision type densenet201

414.733362197876

Inference double precision type densenet161

766.3542318344116

Inference double precision type squeezenet1_0

74.86292839050293

Inference double precision type squeezenet1_1

34.04905319213867

Inference double precision type vgg11

576.3767147064209

Inference double precision type vgg11_bn

580.5839586257935

Inference double precision type vgg13

853.4365510940552

Inference double precision type vgg13_bn

860.3136301040649

Inference double precision type vgg16

1145.091052055359

Inference double precision type vgg16_bn

1152.8028392791748

Inference double precision type vgg19_bn

1444.9562692642212

Inference double precision type vgg19

1437.0987701416016

Inference double precision type mobilenet_v3_large

30.876317024230957

Inference double precision type mobilenet_v3_small

11.234536170959473

Inference double precision type shufflenet_v2_x0_5

7.425284385681152

Inference double precision type shufflenet_v2_x1_0

18.25782299041748

Inference double precision type shufflenet_v2_x1_5

33.34946632385254

Inference double precision type shufflenet_v2_x2_0

57.84676551818848

Результаты с A4000 ADA

Benchmarking

Model average train time

Training half precision type mnasnet0_5

20.266618728637695

Training half precision type mnasnet0_75

21.445374488830566

Training half precision type mnasnet1_0

26.714019775390625

Training half precision type mnasnet1_3

26.5126371383667

Training half precision type resnet18

19.624991416931152

Training half precision type resnet34

32.46446132659912

Training half precision type resnet50

57.17473030090332

Training half precision type resnet101

98.20127010345459

Training half precision type resnet152

138.18389415740967

Training half precision type resnext50_32x4d

75.56005001068115

Training half precision type resnext101_32x8d

228.8706636428833

Training half precision type wide_resnet50_2

113.76442432403564

Training half precision type wide_resnet101_2

204.17311191558838

Training half precision type densenet121

68.97401332855225

Training half precision type densenet169

85.16453742980957

Training half precision type densenet201

103.299241065979

Training half precision type densenet161

137.54578113555908

Training half precision type squeezenet1_0

16.71830177307129

Training half precision type squeezenet1_1

12.906527519226074

Training half precision type vgg11

51.7004919052124

Training half precision type vgg11_bn

57.63327598571777

Training half precision type vgg13

86.10869407653809

Training half precision type vgg13_bn

95.86676120758057

Training half precision type vgg16

102.91589260101318

Training half precision type vgg16_bn

113.74778270721436

Training half precision type vgg19_bn

131.56734943389893

Training half precision type vgg19

119.70191955566406

Training half precision type mobilenet_v3_large

31.30636692047119

Training half precision type mobilenet_v3_small

19.44464683532715

Training half precision type shufflenet_v2_x0_5

13.710575103759766

Training half precision type shufflenet_v2_x1_0

23.608479499816895

Training half precision type shufflenet_v2_x1_5

26.793746948242188

Training half precision type shufflenet_v2_x2_0

24.550962448120117

Inference half precision type mnasnet0_5

4.418272972106934

Inference half precision type mnasnet0_75

4.021778106689453

Inference half precision type mnasnet1_0

4.42598819732666

Inference half precision type mnasnet1_3

4.618926048278809

Inference half precision type resnet18

5.803341865539551

Inference half precision type resnet34

9.756693840026855

Inference half precision type resnet50

15.873079299926758

Inference half precision type resnet101

28.268003463745117

Inference half precision type resnet152

40.04594326019287

Inference half precision type resnext50_32x4d

19.53421115875244

Inference half precision type resnext101_32x8d

62.44826316833496

Inference half precision type wide_resnet50_2

33.533992767333984

Inference half precision type wide_resnet101_2

59.60897445678711

Inference half precision type densenet121

18.052735328674316

Inference half precision type densenet169

21.956982612609863

Inference half precision type densenet201

27.85182476043701

Inference half precision type densenet161

37.41891860961914

Inference half precision type squeezenet1_0

4.391803741455078

Inference half precision type squeezenet1_1

2.4281740188598633

Inference half precision type vgg11

17.11493968963623

Inference half precision type vgg11_bn

18.40585231781006

Inference half precision type vgg13

28.438148498535156

Inference half precision type vgg13_bn

30.672597885131836

Inference half precision type vgg16

34.43562984466553

Inference half precision type vgg16_bn

36.92122936248779

Inference half precision type vgg19_bn

43.144264221191406

Inference half precision type vgg19

40.5385684967041

Inference half precision type mobilenet_v3_large

5.350713729858398

Inference half precision type mobilenet_v3_small

4.016985893249512

Inference half precision type shufflenet_v2_x0_5

5.079126358032227

Inference half precision type shufflenet_v2_x1_0

5.593156814575195

Inference half precision type shufflenet_v2_x1_5

5.649552345275879

Inference half precision type shufflenet_v2_x2_0

5.355663299560547

Training double precision type mnasnet0_5

50.2386999130249

Training double precision type mnasnet0_75

80.66896915435791

Training double precision type mnasnet1_0

103.32422733306885

Training double precision type mnasnet1_3

154.6230697631836

Training double precision type resnet18

337.94031620025635

Training double precision type resnet34

677.7706575393677

Training double precision type resnet50

789.9243211746216

Training double precision type resnet101

1484.3351316452026

Training double precision type resnet152

2170.570478439331

Training double precision type resnext50_32x4d

877.3719882965088

Training double precision type resnext101_32x8d

3652.4944639205933

Training double precision type wide_resnet50_2

2154.612874984741

Training double precision type wide_resnet101_2

4176.522083282471

Training double precision type densenet121

607.8699731826782

Training double precision type densenet169

744.6409797668457

Training double precision type densenet201

962.677731513977

Training double precision type densenet161

1759.772515296936

Training double precision type squeezenet1_0

164.3690824508667

Training double precision type squeezenet1_1

78.70647430419922

Training double precision type vgg11

1362.6095294952393

Training double precision type vgg11_bn

1387.2539138793945

Training double precision type vgg13

2006.0230445861816

Training double precision type vgg13_bn

2047.526364326477

Training double precision type vgg16

2702.2086429595947

Training double precision type vgg16_bn

2747.241234779358

Training double precision type vgg19_bn

3447.1724700927734

Training double precision type vgg19

3397.990345954895

Training double precision type mobilenet_v3_large

84.65698719024658

Training double precision type mobilenet_v3_small

29.816465377807617

Training double precision type shufflenet_v2_x0_5

27.401342391967773

Training double precision type shufflenet_v2_x1_0

48.322744369506836

Training double precision type shufflenet_v2_x1_5

82.22103118896484

Training double precision type shufflenet_v2_x2_0

141.7021369934082

Inference double precision type mnasnet0_5

12.988653182983398

Inference double precision type mnasnet0_75

22.422199249267578

Inference double precision type mnasnet1_0

30.056486129760742

Inference double precision type mnasnet1_3

46.953935623168945

Inference double precision type resnet18

118.04479122161865

Inference double precision type resnet34

231.52336597442627

Inference double precision type resnet50

268.63497734069824

Inference double precision type resnet101

495.2010440826416

Inference double precision type resnet152

726.4922094345093

Inference double precision type resnext50_32x4d

291.47679328918457

Inference double precision type resnext101_32x8d

1055.10901927948

Inference double precision type wide_resnet50_2

690.6917667388916

Inference double precision type wide_resnet101_2

1347.5529861450195

Inference double precision type densenet121

224.35829639434814

Inference double precision type densenet169

268.9145278930664

Inference double precision type densenet201

343.1972026824951

Inference double precision type densenet161

635.866231918335

Inference double precision type squeezenet1_0

61.92759037017822

Inference double precision type squeezenet1_1

27.009410858154297

Inference double precision type vgg11

462.3375129699707

Inference double precision type vgg11_bn

468.4495782852173

Inference double precision type vgg13

692.8219032287598

Inference double precision type vgg13_bn

703.3538103103638

Inference double precision type vgg16

924.4353818893433

Inference double precision type vgg16_bn

936.5075063705444

Inference double precision type vgg19_bn

1169.098300933838

Inference double precision type vgg19

1156.3771772384644

Inference double precision type mobilenet_v3_large

24.2356014251709

Inference double precision type mobilenet_v3_small

8.85490894317627

Inference double precision type shufflenet_v2_x0_5

6.360034942626953

Inference double precision type shufflenet_v2_x1_0

14.301743507385254

Inference double precision type shufflenet_v2_x1_5

24.863481521606445

Inference double precision type shufflenet_v2_x2_0

43.8505744934082

Заключение

Новая видеокарта показала себя эффективным решением для выполнения различных рабочих задач. Благодаря своим компактным размерам она отлично подойдет для мощных компьютеров форм-фактора SFF (Small Form Factor). Также стоит отметить, что 6144 ядра CUDA и 20 ГБ памяти со 160-разрядной шиной делают эту карту одной из самых производительных на рынке. При этом низкое TDP в 70 Вт позволяет снизить затраты на энергопотребление. Четыре порта Mini-DisplayPort позволяют использовать карту с несколькими мониторами или в качестве решения для многоканальной графики.

RTX 4000 SFF Ada представляет собой значительный прогресс по сравнению с предыдущими поколениями, обеспечивает производительность, эквивалентную карте с удвоенной потребляемой мощностью. Благодаря отсутствию разъема питания PCIe RTX 4000 SFF Ada легко интегрировать в рабочие станции с низким энергопотреблением при сохранении высокой производительности.


Арендуйте выделенные и виртуальные GPU серверы с профессиональными графическими картами NVIDIA RTX A5000 / A4000 в надежных дата-центрах класса TIER III в Москве и Нидерландах. Принимаем оплату за услуги HOSTKEY в Нидерландах в рублях на счет российской компании. Оплата с помощью банковских карт, в том числе и картой МИР, банковского перевода и электронных денег.

Комментарии (4)


  1. apelsyn
    20.06.2023 08:15
    +4

    У меня есть опыт работы с "старшим братом" этого графического процессора RTX A6000 Ada. На рабочем компе стоит 2 x RTX A6000 Ada. Сам адаптер где-то на 10% быстрее RTX 4090 и на нем больше памяти 48G. Но самое главное он действительно потребляет значительно меньше енергии чем RTX 4090 -- смело можно ставить в один десктоп корпус 2 карты (без переживаний за то что будут перегреваться).
    Из недостатков -- адаптер издает больше шума, ну и ценник под 6000$. В общем продукт нишевый для ML-задач.

    Было бы правильно добавить в табличку со сравнением A4000 Ada c RTX 4080, который построен на 5 нм чипе AD103.


    1. dasafyev Автор
      20.06.2023 08:15

      Спасибо за отличную идею. Попробуем сделать.


    1. TimID
      20.06.2023 08:15

      Нужно всегда брать топовую карту. Например, 4090Ti, а не продукт предыдущего поколения (3090) потому что расход электроэнергии важен только при массовом применении и где-нибудь в энергодефицитной Европе. А в России гораздо важнее стоимость "входного билета"

      .


      1. dasgutenberg
        20.06.2023 08:15
        +1

        Спасибо за комментарий. Основное сравнение в статье идет между картами A4000 ADA и A4000. Характеристики RTX 3090 представлены для наглядности, да и распространена эта карта пока больше, нежели 4090Ti