На этой неделе компания Intel поделилась долгосрочными планами по внедрению новых техпроцессов. Примерно в 2029 году Intel собирается внедрить техпроцесс с нормами 1,4 нм. Через 10 лет руководящая команда компании вряд ли будет той же самой, что и сегодня. Так что эти планы чем-то неуловимо напоминают притчу Ходжи Насреддина о начитанном ишаке, хане и учителе животного в лице самого Ходжи. К урочному часу ответчика может не оказаться. Но речь не об этом. Запланировали, значит, принимаем как руководство к действию.
В станах конкурентов-лидеров по выпуску полупроводников чуть больше ясности, что подтверждено рисковым производством TSMC чипов с нормами 5 нм (на сегодняшний день уровень брака по таковому всего 20 % при норме 3-8 % для кристаллов площадью 17,92 мм2, для чиплетов размера AMD Zen 2 уровень брака будет больше ? до 60 %). Впрочем, до выпуска процессоров AMD с нормами 5 нм пройдёт ещё не менее полутора лет.
/ изображение с сайта AnandTech
В следующем году со второго квартала техпроцесс TSMC с нормами 5 нм будет использоваться для серийного выпуска SoC на ядрах ARM. В 2022 году TSMC приступит, очевидно, к рисковому выпуску 3-нм чипов (что бы ни значили эти нанометры), а через пару лет компания обещает начать выпуск 2-нм решений. Это будет в 2024-2025 году или на два-три года раньше, чем тот же самый техпроцесс внедрит Intel.
Для компании Samsung техпроцессы с нормами 5 нм и 4 нм станут эволюцией 7-нм техпроцесса, что будет выражено в небольшом постепенном сокращении шагов металлизации под такими элементами FinFET транзисторов, как каналы и затворы. В целом строение транзисторов (число рёбер) останется тем же, как и не изменится строение ячейки SRAM. К выпуску чипов с использованием 4-нм техпроцесса Samsung приступит в районе 2021 года. В том же году компания обещает начать рисковое производство с использованием 3-нм техпроцесса. А некоторые южнокорейские источники утверждают, что это может произойти уже в 2020 году, что выглядит маловероятным.
В данной заметке нас интересует то, что, вплоть до 4-нм техпроцесса Samsung и, очевидно, Intel и TSMC будут использовать FinFET транзисторы ? плавники высоких затворов, в которые врезаются и пронзают насквозь вертикальные гребни каналов. В таких транзисторах электромагнитное поле затвора проникает в каналы с трёх сторон, а два-три канала в каждом транзисторе в сумме обеспечивают необходимую для работы вентиля силу тока.
/ изображение Samsung
Начиная с 3-нм техпроцесса, Samsung поломает эту практику. Концепция FinFET перестанет работать в прежнем виде. Затворы транзисторов FinFET окажутся слишком малы и не смогут переключать транзисторы. Необходимость дальнейшего снижения напряжения питания транзисторов только усугубит это положение. Поэтому для 3-нм техпроцесса будет введён транзистор с кольцевым (окружающим) затвором GAA (Gate-All-Around).
/ изображение Samsung
В Samsung дали новому транзистору коммерческое имя MBCFET (Multi Bridge Channel FET). На практике это развитие идеи транзистора, созданного совместно исследователями IBM, Samsung и GlobalFoundries. Предполагалось, что подобный по строению транзистор будет задействован при переходе к техпроцессу с нормами 5 нм. Но реально эта вентильная структура появится в чипах только с началом 3-нм производства Samsung. Транзистор MBCFET будет представлять собой горизонтально расположенные друг над другом каналы в виде наностраниц, а не вертикальные гребни, как в FinFET. Характеристиками MBCFET транзисторов будет удобно управлять как за счёт варьирования числом страниц, расположенных друг над другом, так и с помощью изменения ширины страницы. Каждая страница ? это канал. Сумма этих переменных будет определять какой у нас транзистор: мощный и быстрый, или слабый, но малопотребляющий. Градаций будет больше двух ? от пяти до семи.
/ изображение Samsung
Самое интересное, ради чего затевалась эта заметка, что транзистор MBCFET может появиться только в рамках 3-нм техпроцесса, а техпроцесс с нормами 2 нм снова потребует изменений в строении транзистора. Такой новый транзистор под именем Forksheet предложил бельгийский исследовательский центр Imec. Впервые подробно о структуре транзистора с раздельными (нано)страницами представители Imec рассказали весной этого года на годовом мероприятии. Но баснями соловья не накормишь. Нам бы пощупать. Пощупать пока нельзя, но моделирование работы Forksheet-транзистора на TCAD бельгийцы провели, о чём сообщили три дня назад.
Перед тем, как рассмотреть полученные данные, поясним, что транзистор Forksheet представляет собой модификацию транзистора с наностраницами ? того самого MBCFET или Gate-All-Around, если абстрагироваться от терминов Samsung. В транзисторе Forksheet плавник вертикального затвора чуть шире, чем у MBCFET, но наностраницы транзисторных каналов расщеплены надвое и разделены слоем диэлектрика. Фактически один MBCFET-транзистор лёгким движением руки превращается в комплементарную транзисторную пару из транзисторов p- и n-типа.
Предложенная структура разрушает серьёзный барьер в уплотнении транзисторов в виде сложности максимально сблизить p- и n-транзисторы и избежать при этом взаимного негативного влияния вентилей.
Очевидно, что предложенный подход увеличит плотность размещения транзисторов на кристалле, но моделирование показало, что улучшатся также производительность и энергопотребление. Переход на транзистор с раздельными страницами позволит уменьшить площадь кристалла до 20 %, а за счёт снижения паразитных ёмкостей и утечек производительность электронных приборов вырастет на величину до 10 %. Если не наращивать частоты, то можно снизить энергопотребление на величину до 24 %.
В запасе у Imec есть ещё одна технология, которая может ещё сильнее увеличить плотность размещения транзисторов. Она может быть применена как на этапе выпуска 3-нм чипов, так и с меньшими нормами производства. Идея заключается в том, чтобы комплементарную пару транзисторов изготавливать друг над другом. Эта нехитрая на первый взгляд операция обещает на 50 % уменьшить размеры как стандартной логической ячейки, так и ячейки SRAM. На этом хорошо проработанные и частично испытанные на моделях идеи заканчиваются.
Переход на 1-нм техпроцесс также может потребовать новой структуры транзистора. В то же время необходимо помнить, что инженеры часто находят возможность растянуть удовольствие ? придумать что-нибудь этакое, чтобы сделать ещё один шаг вперёд на старых костылях.
В станах конкурентов-лидеров по выпуску полупроводников чуть больше ясности, что подтверждено рисковым производством TSMC чипов с нормами 5 нм (на сегодняшний день уровень брака по таковому всего 20 % при норме 3-8 % для кристаллов площадью 17,92 мм2, для чиплетов размера AMD Zen 2 уровень брака будет больше ? до 60 %). Впрочем, до выпуска процессоров AMD с нормами 5 нм пройдёт ещё не менее полутора лет.
/ изображение с сайта AnandTech
В следующем году со второго квартала техпроцесс TSMC с нормами 5 нм будет использоваться для серийного выпуска SoC на ядрах ARM. В 2022 году TSMC приступит, очевидно, к рисковому выпуску 3-нм чипов (что бы ни значили эти нанометры), а через пару лет компания обещает начать выпуск 2-нм решений. Это будет в 2024-2025 году или на два-три года раньше, чем тот же самый техпроцесс внедрит Intel.
Для компании Samsung техпроцессы с нормами 5 нм и 4 нм станут эволюцией 7-нм техпроцесса, что будет выражено в небольшом постепенном сокращении шагов металлизации под такими элементами FinFET транзисторов, как каналы и затворы. В целом строение транзисторов (число рёбер) останется тем же, как и не изменится строение ячейки SRAM. К выпуску чипов с использованием 4-нм техпроцесса Samsung приступит в районе 2021 года. В том же году компания обещает начать рисковое производство с использованием 3-нм техпроцесса. А некоторые южнокорейские источники утверждают, что это может произойти уже в 2020 году, что выглядит маловероятным.
В данной заметке нас интересует то, что, вплоть до 4-нм техпроцесса Samsung и, очевидно, Intel и TSMC будут использовать FinFET транзисторы ? плавники высоких затворов, в которые врезаются и пронзают насквозь вертикальные гребни каналов. В таких транзисторах электромагнитное поле затвора проникает в каналы с трёх сторон, а два-три канала в каждом транзисторе в сумме обеспечивают необходимую для работы вентиля силу тока.
/ изображение Samsung
Начиная с 3-нм техпроцесса, Samsung поломает эту практику. Концепция FinFET перестанет работать в прежнем виде. Затворы транзисторов FinFET окажутся слишком малы и не смогут переключать транзисторы. Необходимость дальнейшего снижения напряжения питания транзисторов только усугубит это положение. Поэтому для 3-нм техпроцесса будет введён транзистор с кольцевым (окружающим) затвором GAA (Gate-All-Around).
/ изображение Samsung
В Samsung дали новому транзистору коммерческое имя MBCFET (Multi Bridge Channel FET). На практике это развитие идеи транзистора, созданного совместно исследователями IBM, Samsung и GlobalFoundries. Предполагалось, что подобный по строению транзистор будет задействован при переходе к техпроцессу с нормами 5 нм. Но реально эта вентильная структура появится в чипах только с началом 3-нм производства Samsung. Транзистор MBCFET будет представлять собой горизонтально расположенные друг над другом каналы в виде наностраниц, а не вертикальные гребни, как в FinFET. Характеристиками MBCFET транзисторов будет удобно управлять как за счёт варьирования числом страниц, расположенных друг над другом, так и с помощью изменения ширины страницы. Каждая страница ? это канал. Сумма этих переменных будет определять какой у нас транзистор: мощный и быстрый, или слабый, но малопотребляющий. Градаций будет больше двух ? от пяти до семи.
/ изображение Samsung
Самое интересное, ради чего затевалась эта заметка, что транзистор MBCFET может появиться только в рамках 3-нм техпроцесса, а техпроцесс с нормами 2 нм снова потребует изменений в строении транзистора. Такой новый транзистор под именем Forksheet предложил бельгийский исследовательский центр Imec. Впервые подробно о структуре транзистора с раздельными (нано)страницами представители Imec рассказали весной этого года на годовом мероприятии. Но баснями соловья не накормишь. Нам бы пощупать. Пощупать пока нельзя, но моделирование работы Forksheet-транзистора на TCAD бельгийцы провели, о чём сообщили три дня назад.
Перед тем, как рассмотреть полученные данные, поясним, что транзистор Forksheet представляет собой модификацию транзистора с наностраницами ? того самого MBCFET или Gate-All-Around, если абстрагироваться от терминов Samsung. В транзисторе Forksheet плавник вертикального затвора чуть шире, чем у MBCFET, но наностраницы транзисторных каналов расщеплены надвое и разделены слоем диэлектрика. Фактически один MBCFET-транзистор лёгким движением руки превращается в комплементарную транзисторную пару из транзисторов p- и n-типа.
Предложенная структура разрушает серьёзный барьер в уплотнении транзисторов в виде сложности максимально сблизить p- и n-транзисторы и избежать при этом взаимного негативного влияния вентилей.
Очевидно, что предложенный подход увеличит плотность размещения транзисторов на кристалле, но моделирование показало, что улучшатся также производительность и энергопотребление. Переход на транзистор с раздельными страницами позволит уменьшить площадь кристалла до 20 %, а за счёт снижения паразитных ёмкостей и утечек производительность электронных приборов вырастет на величину до 10 %. Если не наращивать частоты, то можно снизить энергопотребление на величину до 24 %.
В запасе у Imec есть ещё одна технология, которая может ещё сильнее увеличить плотность размещения транзисторов. Она может быть применена как на этапе выпуска 3-нм чипов, так и с меньшими нормами производства. Идея заключается в том, чтобы комплементарную пару транзисторов изготавливать друг над другом. Эта нехитрая на первый взгляд операция обещает на 50 % уменьшить размеры как стандартной логической ячейки, так и ячейки SRAM. На этом хорошо проработанные и частично испытанные на моделях идеи заканчиваются.
Переход на 1-нм техпроцесс также может потребовать новой структуры транзистора. В то же время необходимо помнить, что инженеры часто находят возможность растянуть удовольствие ? придумать что-нибудь этакое, чтобы сделать ещё один шаг вперёд на старых костылях.
Комментарии (15)
Victor_koly
13.12.2019 10:30Фактически один MBCFET-транзистор лёгким движением руки превращается в комплементарную транзисторную пару из транзисторов p- и n-типа.
Или 2 одинакового типа? Или будет наложено ограничения на возможную топографию кристалла?perfektsionistor Автор
13.12.2019 10:49Imec говорит о комплементарной паре из транзисторов разной проводимости (повышает коэффициент усиления), но ни кто не мешает создать пару одинаковых транзисторов, если это будет нужно. Это вопрос внесения примесей туда, где это необходимо.
toivo61
13.12.2019 13:41Была такая шутка в 80-х:
— Представь транзистор из десяти атомов, и вдруг, в него квадратный электорон залетает…
OtshelnikFm
Вспоминаешь времена транзисторов мп42 (когда паял на них) и теперь читаешь подобные новости — дух захватывает, какой прогресс в электронике произошел.
И думаешь — а где предел? Будет ли он?
ar1ur
В рамках нынешней процессорной архитектуры — безусловно, законов физики никто не отменял. Другой вопрос — когда? То, что называют 10-нм техпроцессом, в самой микроскопической части (толщина ребра) имеет размер 7 нм. А до этого, у 14-нм техпроцесса, было 8 нм. Эти несколько нанометров — предел, за который выйти нельзя. Дальнейшее наращивание количества транзисторов на кристалле будет происходить за счет других параметров.
perfektsionistor Автор
В ближайшие три года резкое наращивание плотности будет за счёт объёмной (3D) компоновки нескольких кристаллов. TSMC для этого несколько лет назад купила у Qualcomm на Тайване завод и на его основе сама занялась услугами упаковки. Нанометры будут прогибаться слабо.
amartology
Что значит «будет»? Оно уже в каждом втором мобильнике такое упакованное стоит.
perfektsionistor Автор
Есть, но в виде 2.5D. К 3D ещё надо дошагать.
justhabrauser
Предел давно показала IBM — одноэлектронные транзисторы.
Но это ж IBM, они еще раньше отдельными атомами рисовали свой лого.
К производству пока отношения не имеет, естественно.
Пока.
Fedorkov
А если научиться использовать несколько энергетических уровней электрона? Или что-нибудь вроде функциональной электроники.
amartology
Научиться можно чему угодно, вопрос в том, что КМОП-технология обеспечивает очень простую, надежную и быструю схемотехнику с высокой помехоустойчивостью.
Так-то можно и эти транзисторы заставить в аналоговом режиме работать и вместо инверторов ставить АЦП.
KvanTTT
Разумеется будет — как минимум снизу это ограничивается размером атома кремния, а это 132 пм (0.143 нм), по факту от 1 нм.
Victor_koly
А атом меди — 128 пм. Так просто согласовать не выйдет.
И, самое главное — 1 атом металла не является металлом с точки зрения электронных зон. Так же как 1 атом кремния не может быть п/п как минимум в том смысле, что нам необходимо легирование. 139 пм у мышьяка — вроде как близко к кремнию, а вот у бора уже 98 пм. Ну и с другой стороны нам нужна ГЦК решетка, я бы брал как минимум 14 атомов кремния на ячейку техпроцесса.
pae174
Размер атома тут ни при чем. Значение имеют два параметра: шаг кристаллической решетки (0,54 нм) и необходимость поддерживать определенную концентрацию примесей в кремнии. Полупроводниковый переход создается подмешиванием в кремний примесей в определенной концентрации.
Например, необходимо поставить в кристаллическую решетку кремния фосфор в пропорции 1/1000. Без фосфора вообще кристалл не заработает. С двукратным переизбытком фосфора будет брак по электрическим параметрам. То есть на каждый гипотетический транзистор размером 10*10*10 периодов кристаллической решетки кремния (5 нм, содержит 1000 атомов кремния) надо исхитриться и поставить в такой кубик один атом фосфора. Не ноль и не два. Строго один.
Однако если гипотетический транзистор имеет размеры 20*20*20, то это дает размер кубика в 10 нм но при этом атомов фосфора надо посадить не 1 а 4. Если даже будет погрешность в +- 20% то такой транзистор все равно будет хоть как-то работать.
censor2005
Даже не 4, а 8