Я работаю в фирме, которая разрабатывает устройства для умных домов на частотах 869, 915 МГц. Это маломощные устройства с антеннами из провода, PCB-антеннами и внешними штыревыми антеннами. Для работы в квартире антенна должна быть всенаправленной. Заранее не известно, где будет расположено устройство и как сориентировано. Некоторые ключевые устройства мы относили к сторонним специалистам для настройки антенны, потом использовали эти согласования в других устройствах. Какое-то время этого хватало. У нас большой парк устройств, плюс одни и те же устройства работают в разных корпусах. Это требует настройки антенны для каждого типа продукта. Обращаться каждый раз к специалистам слишком дорого, поэтому несколько лет пытаемся научиться делать сами. Далее расскажу о процессе настройки антенны для одного из наших устройств с антенной из провода (ground plane).

▍ Описание измерительного оборудования


Для настройки антенны буду использовать следующее оборудование:

  • Векторный анализатор цепей SV4401A — клон NanoVNA.
  • Спектроанализатор DSA815TG для относительной оценки излучаемой мощности.
  • Антенны Linx на 869 МГц и 915 МГц.
  • Китайскую оценочную плату для калибровки векторного анализатора с разъёмами u.fl.
  • Магазин подстроечных конденсаторов и индуктивностей.
  • Программу Atyune для моделирования согласования.

Перед началом работы проверяю все переходники и соединительные кабели на спектроанализаторе. Подключаю к обоим портам прибора и проверяю каждый узел на отсутствие потерь в доступном диапазоне частот. Для моего спектроанализатора верхний предел 1,5 ГГц.

▍ Цели и задачи


Цель работы: увеличить дальность работы устройства. Этого можно добиться двумя путями:

  • увеличить мощность излучения антенны,
  • сделать антенну направленной.

Второй метод не подходит. Устройство должно быть простым в установке, и оно может одновременно работать с несколькими другими устройствами, расположенными в разных направлениях.

Задача: уменьшить КСВ антенны. КСВ — коэффициент, характеризующий количество сигнала, которое отразилось от антенны и вернулось в передатчик. Предполагаю, что чем меньше отразилось, тем больше излучилось. Энергия может тратиться на разогрев антенны, согласующих компонентов и печатной платы, попробую этим пренебречь. Дополнительная задача — сделать одно согласование на две частоты. Это уменьшит номенклатуру товаров и упростит логистику.

▍ Определение уровня идеального согласования


Определю максимальный уровень энергии сигнала, чтобы понять, что цель достигнута. Для этого сигнал с передатчика перенаправлю на лучшую из имеющихся антенн.

У меня есть антенны на 869 и 915 МГц. Из диаграммы Вольперта-Смита видно, что каждая антенна лучше работает в своём диапазоне (более низкий КСВ).

Linx 868 МГц

Linx 915 МГц

Антенну подключаю через u.fl пигтейл. Плата имеет перемычку, через которую можно выбрать направление для радиосигнала.

Подключение антенны к «живому» устройству

Для измерения энергии сигнала перевожу чип в режим генерации несущей частоты. Для каждой частоты выбираю свои антенны. Приёмную антенну подключаю к спектроанализатору. Расстояние между антеннами около трёх метров. В это расстояние укладывается около 9 длин волн, значит, измеряю в дальнем поле.

Безэховой камеры у меня нет, поэтому наблюдаю дисперсию сигнала из-за отражения от стен, пола и потолка. Принимающая антенна неподвижна. Передающую антенну двигаю в квадрате 20х20 см, и немного меняю положение своего тела, пока не добьюсь максимально возможного показания на спектроанализаторе.

Исходные устройства имели энергию -32 и -31 дБм для частот 869 и 915 МГц соответственно. Устройства с эталонными антеннами: -28 и -25 дБм соответственно.

▍ Ход работы


Согласовывать антенну буду с помощью п-фильтра.

П-фильтр

Общий смысл в следующем. Передатчик имеет волновое сопротивление 50 Ом, а антенна имеет другое неизвестное сопротивление. Компонентами п-фильтра можно изменить общее сопротивление антенны и п-фильтра так, что оно приблизится к 50 Ом. Следовательно, передаваемая в антенну мощность будет максимальной. Сопротивление согласующих компонентов зависит от ёмкости и индуктивности. Чем изначальное сопротивление антенны ближе к требуемому, тем меньшими номиналами согласования можно обойтись, и тем большая мощность передастся в эфир.

Во всех изученных источниках авторы подключают векторный анализатор (ВАЦ) к радиотракту коаксиальным кабелем. Центральную жилу припаивают рядом с ножкой микроконтроллера, а экран — к «земле». После этого калибруют ВАЦ на первом компоненте согласующей цепочки.

Вот пример:
Типичный пример подключения ВАЦ к исследуемой антенне

Напаивать компоненты тяжелее, чем подключать эталонные нагрузки, поэтому я припаял u.fl разъём к началу радиотракта. Теперь калибровку можно делать на оценочной плате.

Китайская оценочная плата

Доработанная плата

Не знаю, насколько качественная калибровка получается таким образом, но зато перекалибровать ВАЦ можно быстро. А это нужно делать при смене диапазона частот, при изменении температуры в комнате и при каждом включении прибора. За две недели выполнил много калибровок. Позже попробую второй метод.

▍ Подготовка ВАЦ к измерениям


На результат измерений оказывают сильное влияние окружающие предметы, особенно металлические, а также изменение изгиба кабеля. Лучше всего использовать жёсткие кабели, или полужёсткие. У меня есть только гибкий кабель. Поэтому приклеиваю скотчем к деревянному столу ВАЦ и кабель.

Китайская оценочная плата

  • Диапазон частот от 869 и 915 МГц.
  • Минимальное количество точек сканирования (101), потому что диапазон частот очень маленький.
  • Усреднение результата 4. Чтобы уменьшить уровень шума и повысить стабильность графиков.
  • Калибровка по трём эталонным сопротивлениям (SOL).

Прибор готов к измерениям. Подключаю печатную плату с напаянным u.fl разъёмом без согласующих элементов. На картинке показана схема измерения с припаянным коаксиальным кабелем, но проблема с плоскостью калибровки такая же, как и у меня.

Схема измерений с переносом плоскости калибровки

Сейчас плоскость калибровки находится где-то после u.fl разъёма. Чтобы продолжить согласование антенны, нужно или перенести плоскость калибровки к последовательному компоненту п-фильтра, или учесть это в программе моделирования. Двигать плоскость калибровки можно по коаксиальному кабелю, копланарной линии, если волновое сопротивление равно 50 Ом. Первый метод для меня сложнее. Кусочек копланарной линии между плоскостью калибровки и компонентами п-фильтра оказывает влияние на измерения. Чем он длиннее, тем сильнее будет поворачиваться кривая вокруг центра на диаграмме Вольперта-Смита. Сигнал проходит этот кусочек дважды, и у него увеличивается фаза. На картинке можно увидеть, как дополнительный кусочек коаксиального кабеля смещает кривую. Исходный график красного цвета, жёлтый — после добавления длины.

Китайская оценочная плата

Если не учитывать дополнительную длину копланарной линии между плоскостью калибровки и согласующими элементами, то результаты в программе моделирования и ВАЦ будут сильно отличаться. Конечно, нужно учитывать и копланарную линию между компонентами согласования, но пока приму её как несущественную и посмотрю, что получится.

В дорогих современных ВАЦ есть функции настройки порта, но в моём дешёвом есть одна функция «E-delay». Дальнейшая методика не требует расчётов и взята из обучающего ролика.
Согласующих компонентов нет. Открываю график зависимости фазы от частоты.

Фаза без коррекции

Добавляю задержку, пока фаза не станет нулевой.

Фаза с коррекцией

Считаю, что после этого плоскость калибровки передвинулась на последовательный элемент, середину п-фильтра.

Ставлю перемычку 0 Ом на место последовательного элемента и припаиваю антенну заведомо большей длины. Антенна называется «четвертьволновый штырь». Длина четверти волны 86 мм для частоты 869 МГц. Расчёт сделан для скорости электромагнитной волны в вакууме. Пусть будет 120 мм. Отрезаю понемногу кончик провода и смотрю, как изменяется согласование антенны. Выбираю самое лучшее согласование, в котором КСВ на обеих частотах минимально. К сожалению, картинок и подробных протоколов эксперимента не сохранилось. В таблице последние три эксперимента, когда уже знал, где искать.

№ опыта

Длина антенны

869 МГц
915 МГц
КСВ Z КСВ Z
1 95 3,9 21R 48pF 2,5 33R 5pF
92,5 3,7 21R 5pF 2,75 26R 5,8pF
2 95 3 28R .. 2,4 34R ..
93 3,1 27R .. 2,4 32R ..
92 3,3 24R .. 2,4 30R ..
90 3,5 ... 2,6 ...
3 95 3,2 26R .. 2,45 32R ..
Выбрал длину провода 95 мм с самым низким КСВ для двух частот. Данные результаты противоречат моим знаниям. Я и все в моём окружении уверены, что длина антенны четвертьволнового штыря должна быть равна или немного меньше четверти длинны волны из-за коэффициента укорочения. Но наверняка не всё так просто.

Диаграмма Вольперта-Смита антенны без согласования

Сохраняю измерения ВАЦ в файл и открываю их в программе Atyune. Выбираю следующий вариант согласования.

Вариант согласования двумя индуктивностями

Нажимаю «auto matching», кривая оказывается возле центра диаграммы. Картинка будет ниже.
Посмотрю по шагам, что происходит c кривой при добавлении элементов.

Оставлю только последовательную катушку в программе.

Согласование из последовательной катушки

А это показания прибора с напаянной катушкой.


Видно, что диаграмма сдвинулась в том же направлении, но недостаточно.

Попробую припаять индуктивность побольше. Это показания с катушкой 8.2 нГн.


Кривая ушла дальше, чем в программе, и КСВ стал приемлемым. Может, этого достаточно?
Напаиваю согласование на рабочий узел, спектроанализатор показывает -30 дБм. Стало лучше, но ещё не идеал. Продолжаю.

Это кривая с катушкой 7.5 нГн.


Стало более похоже на показания программы. Постараюсь запомнить эту катушку, а пока продолжу с тем согласованием, которое предложила программа, 6.8 нГн.

Это кривая в программе после добавления шунтирующей катушки.

Идеальное согласование в программе

И показания ВАЦ.


Гораздо хуже, чем предсказала программа. Но маркер 2 имеет КСВ 1,17. Это очень хороший результат. Напаиваю согласование на рабочий узел. Спектроанализатор показывает -26 дБм для частоты на маркере 2 и -32 дБм на второй частоте. Одну частоту удалось согласовать. К сожалению, то, что я описываю, происходило в течение недели, и я забыл про последовательную катушку 7.5 нГн. Сейчас, когда собрал все данные вместе, мой следующий шаг выглядит случайным и необдуманным. В процессе согласования не понимал, почему мои действия не приводят к ожидаемым результатам, и пробовал получить результат эмпирически. Насколько понимаю, это основной метод работы с антеннами. Ведь в программе идеальная картинка, потому что не учитываются паразитные свойства согласующих компонентов и расстояния между ними. Сам ВАЦ измеряет отражённый сигнал на модифицированной плате. На реальной плате вместо разъёма для ВАЦ будет стоять микроконтроллер, и это далеко не все пункты, вносящие рассогласование и погрешности. Поэтому показания ВАЦ для меня ориентир, а доверяю я только показаниям спектроанализатора.

Решил посмотреть, как изменятся показания спектроанализатора с другими шунтирующими катушками. Вдруг мне повезёт и КСВ второй частоты удастся понизить, не испортив хороший КСВ.

В таблице результаты измерений.

Шунтирующая индуктивность, нГн
869 МГц, дБм
915 МГц, дБм
15 -28 -28
12 -28 -26
10 -33 -26
8,2 -31 -28
6,8 -32 -30
Лучший результат для 12 нГн. Это практически уровень эталонных антенн.

Осталось провести сравнение в «боевых» условиях. Место проведения — офис с длинным коридором. Методика: приёмник закреплён в комнате, я хожу с передатчиками по коридору и ищу максимальное расстояние, на котором передаются команды. К сожалению, коридора оказалось мало. На картинке представлены результаты сравнения для частоты 869 МГц.

Сравнение дальности работы антенн

На частоте 915 МГц дальность связи выше, и мне приходилось уходить по лестнице на другой этаж. Приводить эти данные не буду. В обоих случаях тенденция сохранялась. Худшей была исходная антенна, на втором месте антенна 95 мм и «немного» лучше антенна после согласования. Провести измерения на улице не получилось. Качество радиосвязи заметно хуже. Предполагаю, из-за большого уровня шумов. Сейчас в планах найти тихое, уединённое место возле озера, и не спеша в хорошей компании провести «измерения выходного дня».

▍ Выводы


После настройки антенны излучаемая энергия увеличилась в среднем на 5 дБм. Это соответствует увеличению излучаемой мощности примерно в три раза. Дальность связи значительно возросла.

Не имея глубоких познаний в теории антенн, не имея дорогостоящего оборудования и безэховой камеры, можно в домашних условиях значительно улучшить дальность связи.

Конечно, мне не хватает как теоретических знаний, так и практических. Нашёл интересный обучающий курс по разработке, оптимизации и тюнингу антенн. Он проходит в заочном формате на базе ТУСУР (томский университет). Чтобы курс начался, нужно собрать 6 человек. Пока нас двое. Приглашаю всех желающих (ссылка на страницу курса). Там же можно запросить подробную программу курса. Цена около 70 000 р. Никакого отношения к ТУСУР не имею, хочу понимать немного больше в работе антенн и писать более осмысленные статьи.

▍ Список использованной литературы:


  1. Antenna Impedance Measurement and Matching.
  2. Help-файл программы Atyune.
  3. Многочисленные видеоролики на YouTube авторов: w2aew, «Не влезай — Убьёт!!! Канал про электричество», Andreas Spiess, EEVblog.
  4. Джоэль П. Дансмор «Измерения параметров СВЧ устройств», Техносфера.

Telegram-канал с розыгрышами призов, новостями IT и постами о ретроиграх ????️

Комментарии (14)


  1. vadimk91
    20.08.2023 07:44
    +2

    программу курса. Цена около 70 000 р

    А ведь когда-то всему этому в профильных ВУЗах обучали бесплатно, сейчас у государства другие приоритеты.


    1. xirahai
      20.08.2023 07:44

      Начальный уровень по антеннам вполне можно изучить по радиофорумам и видосам на ютубе. Но если у товарищей непреодолимое желание расстаться с 70 тр - как говорится флаг им в руки...


  1. Astrei
    20.08.2023 07:44
    +6

    Вы пришли к верному выводу что процесс настройки скорее полуэмпирический. Причина в том что вы не можете полностью контролировать эксперимент - окружение вокруг антенны, всяческие переотражения, реальное положение калибровочной плоскости и даже вашего тела относительно антенны вносят слишком много случайных факторов. Формула бы сработала если бы вы измеряли в безэховой камере и использовали какой-нибудь прибор от R&S за много денег. Но и такой метод имеет право на жизнь, хоть и занимает побольше времени. Этакая оптимизация с начальными условиями.

    Могу посоветовать использовать ферритовый фильтр на кабеле, которым измеряете. Токи текущие по его внешней оплетке могут мешать измерениям. Проверить наличие такого влияния просто - касаетесь рукой кабеля, если показания меняются, значит кабель является частью антенны, что не есть хорошо. Ну и конечно же я бы не стал доверять китайским приборам и платам, точность там неизвестная. В идеале хотя-бы сравнить их показания и точность номиналов на плате с настоящим прибором.

    Ещё в целом думаю важно вовремя остановиться. Разумеется будет здорово иметь заветные 50 Ом и маркер чётко в центре диаграммы. Но если антенна будет применяться в различных условиях, в разном окружении, то могут возникать ситуации когда такое согласование будет работать хуже. Иногда антенны специально не настраивают слишком хорошо, чтобы сделать их более универсальными и менее восприимчивыми к внешним факторам.

    PS: Я не думаю что вам нужен какой-то там курс, вы и так на верном пути. Изучайте материал сами, это самый качественный вариант образования.


    1. YDR
      20.08.2023 07:44

      Поддержу уважаемого Astrei. У Вас хорошо получается(тоже думаю, что нет необходимости слушать целый дорогой курс). Не исключено, что Ваша настройка уже очень близка к пределу. Кроме того, на производстве будет разброс параметров компонентов, поэтому все тоже не будет идеальным.

      Обратите внимание лучше на изучение и развитие LoRA, за счет более совершенной обработки можно вытянуть еще дальности.


      1. sergeyvass Автор
        20.08.2023 07:44
        +1

        LoRA имеет бОльшую дальность и мЕньшую скорость обмена данными по сравнению с Z-Wave. Работаю больше с Z-Wave.
        Пару лет назад на частоте 915 МГц появилась опция Long Range. Увеличение дальности работы в два раза. Не претендую на экспертное заключение, но из моих измерений видно, что чип лучше согласован на эту частоту специально, и пользователям других частот не видать эту опцию.


    1. sami777
      20.08.2023 07:44

      100% является! Там же не диполь. Да и ко всему прочему согласован неидеально.


  1. kkuznetzov
    20.08.2023 07:44
    +2

    Хороший кабель это действительно важно.

    Я так три дня потерял, пока не пончл, что кабель кривой.

    Результаты измерений плыли.


  1. Electrovoicer
    20.08.2023 07:44

    Основная проблема в том, что калибровка с такими "мерами" почти никуда не годится (( В нормальных ВАЦ в софте подключаются описания комплектов мер. В реальном мире и кабели не 50 Ом, и разъемы не 50 Ом, и КЗ не совсем КЗ, и ХХ не ХХ, и резистор 50 Ом - не совсем резистор, причем даже на ваших частотах это уже начинает быть заметным. По идее, нужно откалиброваться на известном комплекте мер по плоскости присоединяющего U.FL разъема. Таких готовых описанных комплектов мер не существует. Один из путей - откалиброваться по плоскости присоединения основных подводов (SMA-порты, например), а потом тем или иным образом исключить дополнительную электрически короткую оснастку, например, методом деления пополам двух одинаковых оснасток. В целом, тема бесконечная. На картинке ниже - полученный таким способом, описанный (s-параметрический) комплект мер КЗ/ХХ/50 для U.FL присоединения.

    P.S. Например, вот в этом документе есть описание разных способов исключения оснастки:

    https://planarchel.ru/upload/uf/810/s45a5qsvsvzh5o0yus049ou4o80n2bq2/AFR_rus_ver_23.1.pdf


  1. angryRamulus
    20.08.2023 07:44
    +1

    При согласовании при большом рассогласовании используются не фильтры, а согласующие цепи. Да, они очень похожи, т.к. тоже являются четырёхполюсниками, но функции совершенно иные. Самые универсальные это пи и тау цепи, являющиеся, по сути, эквивалентом вч линии на сосредоточенных элементах.


    1. YDR
      20.08.2023 07:44

      на таких частотах они будут громоздкими, если я правильно понимаю.


  1. dmitry_lyzin
    20.08.2023 07:44
    +2

    Из статьи:

    Антенна называется «четвертьволновый штырь». Длина четверти волны 86 мм для частоты 869 МГц.

    ....
    Выбрал длину провода 95 мм с самым низким КСВ для двух частот. Данные результаты противоречат моим знаниям. ...

    Чтобы «четвертьволновый штырь» имел входное сопротивление 50 Ом ему противовесы нужны. Правильное количество (3 шт) и правильным образом расположенные (под 45° вниз если штырь - вверх, равномерно по кругу).

    А у Вас противовес - Ваша платка. Какое входное сопротивление у такого штыря одному Богу известно...


  1. xirahai
    20.08.2023 07:44

    Согласование по КСВ - это лишь первый этап настройки антенны. Окончательная настройка в идеале должна пооизводиться с помощью измерительного приемника (или спектроанализатора, на крайняк приемник с неплохим S-метром) расположенного в дальней зоне, то есть на расстоянии не менее 15...20 длин волн. На этот приемник вешаем апериодическую антенну, и подстройкой антенны передатчика и подбором согласующих компонентов добиваемся максимального уровня принимаемого сигнала. Это практически заменяет безэховую камеру. В бытность когда занимался связной аппаратурой, показания измерительного приемника передавались с помощью видеокамеры по свч радиоканалу.


  1. Bench2501
    20.08.2023 07:44
    +1

    Если не читали почитайте К. Ротхаммеля "Антенны" вся книга вам конечно не нужна, но некоторые главы будут полезны. И книжку "Антенны излучают" не помню автора, там много номограмм для расчетов, больше для радиолюбителей, но и вам будет полезно


  1. klounader
    20.08.2023 07:44
    +1

    Посмотрите, как делаются двухдиапазонные антенны для портативных радиостанций, а то вы пытаетесь из штыря сделать универсальную (обзорную) антенну, которая не умеет в избирательность. Вам же нужно выделить из эфира всего две частоты, а не ловить попутно весь мусор с других диапазонов. Попробуйте скрутить антенну в спираль и подкинуть кондёр в пяток пик на один из витков. Таким образом антенна будет работать заодно и как узкополосный преселектор, облегчающий работу приёмника, а передатчик будет меньше фонить гармошками.