/ фото Taylor Vick Unsplash

В прошлый раз мы говорили о материалах, которые могут заменить кремний в производстве транзисторов и расширить их возможности. Сегодня обсуждаем альтернативные подходы к разработке полупроводниковых изделий и какое применение они найдут в дата-центрах.

Пьезоэлектрические транзисторы


Такие устройства имеют в своей структуре пьезоэлектрический и пьезорезистивный компоненты. Первый преобразует электрические импульсы в звуковые. Второй — поглощает эти звуковые волны, сжимается и, соответственно, открывает или закрывает транзистор. В качестве пьезорезистивного вещества используется селенид самария (слайд 14) — в зависимости от давления он ведет себя или как полупроводник (с высоким сопротивлением), или как металл.

Одними из первых концепцию пьезоэлектрического транзистора представили в IBM. Инженеры компании занимаются разработками в этой области еще с 2012 года. Также в этом направлении работают их коллеги из Национальной физической лаборатории Великобритании, университета Эдинбурга и Оберна.

Пьезоэлектрический транзистор рассеивает значительно меньшее количество энергии, чем кремниевые устройства. В первую очередь технологию планируют применять в небольших гаджетах, от которых сложно отводить тепло — смартфонах, радиоприборах, радарах.

Также пьезоэлектрические транзисторы могут найти применение в серверных процессорах для дата-центров. Технология повысит энергоэффективность аппаратного обеспечения и позволит сократить расходы операторов ЦОД на ИТ-инфраструктуру.

Туннельные транзисторы


Одной из главных задач производителей полупроводниковых устройств является проектирование транзисторов, которые можно переключать малыми напряжениями. Решить её способны туннельные транзисторы. Такие устройства управляются с помощью квантового туннельного эффекта.

Таким образом, при наложении внешнего напряжения переключение транзистора происходит быстрее, так как электроны с большей вероятностью преодолевают диэлектрический барьер. В результате устройству требуется в несколько раз меньшее напряжение для работы.

Разработкой туннельных транзисторов занимаются ученые из МФТИ и японского университета Тохоку. Они использовали двухслойный графен, чтобы создать устройство, которое работает в 10–100 раз быстрее кремниевых аналогов. По словам инженеров, их технология позволит спроектировать процессоры, которые будут в двадцать раз производительнее современных флагманских моделей.


/ фото PxHere PD

В разное время прототипы туннельных транзисторов реализовывались с использованием различных материалов — помимо графена, ими были нанотрубки и кремний. Однако технология до сих пор не покинула стены лабораторий, и о масштабном производстве устройств на её основе речи не идет.

Спиновые транзисторы


Их работа основана на перемещении спинов электронов. Движутся спины с помощью внешнего магнитного поля, упорядочивающего их в одном направлении и формирующего спиновый ток. Устройства, работающие с таким током, потребляют в сто раз меньше энергии, чем кремниевые транзисторы, и могут переключаться со скоростью миллиард раз в секунду.

Главным достоинством спиновых приборов является их многофункциональность. Они совмещают функции накопителя информации, детектора для её считывания и коммутатора для её передачи другим элементам чипа.

Считается, что первыми концепцию спинового транзистора представили инженеры Суприйо Датта (Supriyo Datta) и Бисваджит Дас (Biswajit Das) в 1990 году. С тех пор разработками в этой области занялись крупные ИТ-компании, например Intel. Однако, как признают инженеры, спиновые транзисторы еще нескоро появятся в потребительских продуктах.

Металл-воздушные транзисторы


По своей сути принципы работы и конструкция металл-воздушного транзистора напоминает транзисторы MOSFET. За некоторыми исключениями: стоком и истоком нового транзистора являются металлические электроды. Затвор устройства расположен под ними и заизолирован оксидной пленкой.

Сток и исток установлены друг от друга на расстоянии тридцати нанометров, что позволяет электронам свободно проходить сквозь воздушное пространство. Обмен заряженными частицами происходит за счет автоэлектронной эмиссии.

Разработкой металл-воздушных транзисторов занимается команда из университета в Мельбурне — RMIT. Инженеры говорят, что технология «вдохнет новую жизнь» в закон Мура и позволит строить целые 3D-сети из транзисторов. Производители чипов смогут перестать заниматься бесконечным уменьшением техпроцессов и займутся формированием компактных 3D-архитектур.

По оценкам разработчиков, рабочая частота транзисторов нового типа превысит сотни гигагерц. Выход технологии в массы расширит возможности вычислительных систем и увеличит производительность серверов в дата-центрах.

Сейчас команда ищет инвесторов, чтобы продолжить свои исследования и разрешить технологические сложности. Электроды стока и истока плавятся под воздействием электрического поля — это снижает производительность транзистора. Недостаток планируют поправить в ближайшие пару лет. После этого инженеры начнут подготовку к выводу продукта на рынок.



О чем еще мы пишем в нашем корпоративном блоге:

Комментарии (3)


  1. killik
    16.06.2019 00:10
    +1

    Т.н. "металл-воздушные" транзисторы это ни что иное, как старые добрые радиолампы, причем воздух там в функционировании не участвует вовсе, да и металл не обязателен, нужен просто проводник. И переход на них будет означать, что человечество потратило полвека на тупиковую полупроводниковую химеру. А люди ой как не любят признавать свои ошибки.


    1. saege5b
      16.06.2019 10:31

      С вакуумных ламп, переход на точную фотолитографию как-то оптимистично.


    1. Zmiy666
      16.06.2019 14:32

      сразу вспомнился тот анекдот, который походу уже перестает таковым быть.
      — Проходит выставка по достижениям в компьютерной технике. Представлены новейшие процессоры от Intel с частотой 4.2 гигагерца, AMD Atlon 64, а так же впервые процессор Зеленоградского НПО «Электроника». Процессоры проходят тестирование по всем параметрам, и везде лидирует отечественное изделие. Эксперты в шоке. Приносят мощный микроскоп, кладут процессор. Один эксперт заглядывает в окуляры и через секунду падает в обморок. Его коллега заглядывает и тоже падает в обморок. Комиссия в недоумении. Третий эксперт долго смотрит в микроскоп, а потом, заикаясь, произносит:
      — Вы не поверите! Он ламповый!
      --