В промышленности свыше 60% электроэнергии потребляется асинхронными электроприводами – в насосных, компрессорных, вентиляционных и других установках. Это наиболее простой, а потому дешевый и надежный тип двигателя.
Технологический процесс различных производств в промышленности требует гибкого изменения частоты вращения каких-либо исполнительных механизмов. Благодаря бурному развитию электронной и вычислительной техники, а также стремлению снизить потери электроэнергии появились устройства для экономного управления электродвигателями различного типа. В этой статье как раз и поговорим о том, как обеспечить максимально эффективное управление электроприводом. Работая в компании «Первый инженер» (группа компаний ЛАНИТ), я вижу, что наши заказчики всё больше внимания уделяют энергоэффективности
Большая часть электрической энергии, потребляемой производственными и технологическими установками, используется для выполнения какой-либо механической работы. Для приведения в движение рабочих органов различных производственных и технологических механизмов преимущественно используются асинхронные электрические двигатели с короткозамкнутым ротором (в дальнейшем именно о данном типе электродвигателя и будем вести повествование). Сам электродвигатель, его система управления и механическое устройство, передающее движение от вала двигателя к производственному механизму, образуют систему электрического привода.
Наличие минимальных потерь электроэнергии в обмотках за счет регулирования частоты вращения двигателя, возможность плавного пуска за счет равномерного увеличения частоты и напряжения — это основные постулаты эффективного управления электродвигателями.
Ведь ранее существовали и до сих пор существуют такие способы управления двигателем, как:
- реостатное регулирование частоты путем введения дополнительных активных сопротивлений в цепи обмоток двигателя, последовательно закорачиваемых контакторами;
- изменение напряжения на зажимах статора, при этом частота такого напряжения постоянна и равна частоте промышленной сети переменного тока;
- ступенчатое регулирование путем изменения числа пар полюсов статорной обмотки.
Но эти и другие способы регулирования частоты несут с собой главный недостаток — значительные потери электрической энергии, а ступенчатое регулирование по определению является недостаточно гибким способом.
Потери неизбежны?
Остановимся более подробно на электрических потерях, возникающих в асинхронном электродвигателе.
Работа электрического привода характеризуется целым рядом электрических и механических величин.
К электрическим величинам относятся:
- напряжение сети,
- ток электродвигателя,
- магнитный поток,
- электродвижущая сила (ЭДС).
Основными механическими величинами являются:
- частота вращения n (об/мин),
- вращающийся момент M (Н•м) двигателя,
- механическая мощность электродвигателя P (Вт), определяемая произведением момента на частоту вращения: P=(M•n)/(9,55).
Для обозначения скорости вращательного движения наряду с частотой вращения n используется и другая известная из физики величина — угловая скорость ?, которая выражается в радианах за секунду (рад/с). Между угловой скоростью ? и частотой вращения n существует следующая связь:
при учете которой формула приобретает вид:
Зависимость вращающего момента двигателя M от частоты вращения его ротора n называется механической характеристикой электродвигателя. Отметим, что при работе асинхронной машины со статора на ротор передается через воздушный зазор с помощью электромагнитного поля так называемая электромагнитная мощность:
Часть этой мощности передается на вал ротора в виде механической мощности согласно выражению (2), а остальная часть выделяется в виде потерь в активных сопротивлениях всех трех фаз роторной цепи.
Эти потери, называемые электрическими, равны:
Таким образом, электрические потери определяются квадратом тока, проходящего по обмоткам.
Они в сильной степени определяются нагрузкой асинхронного двигателя. Все другие виды потерь, кроме электрических, изменяются с нагрузкой менее существенно.
Поэтому рассмотрим, как изменяются электрические потери асинхронного двигателя при регулировании частоты вращения.
Электрические потери непосредственно в обмотке ротора электродвигателя выделяются в виде тепла внутри машины и потому определяют ее нагрев. Очевидно, чем больше электрические потери в цепи ротора, тем меньше КПД двигателя, тем менее экономична его работа.
Учитывая, что потери в статоре примерно пропорциональны потерям в роторе, еще более понятно стремление уменьшить электрические потери в роторе. Тот способ регулирования частоты вращения двигателя является экономичным, при котором электрические потери в роторе относительно невелики.
Из анализа выражений следует, что самый экономичный способ управления двигателями заключается в частоте вращения ротора, близкой к синхронной.
Частотно-регулируемые приводы
В обиход различных сфер промышленности, которые используют насосное, вентиляционное оборудование, конвейерные установки, объекты генерации (ТЭЦ, ГРЭС и т.п.) и др. вошли такие установки, как частотно-регулируемые приводы (ЧРП), также называемые преобразователями частоты (ПЧ). Данные установки и позволяют изменять частоту и амплитуду трехфазного напряжения, поступающего на электродвигатель, за счет чего и достигается гибкое изменение режимов работы управляющих механизмов.
Высоковольтный частотно-регулируемый привод
Конструктив ЧРП
Приведем краткое описание существующих преобразователей частоты.
Конструктивно преобразователь состоит из функционально связанных блоков: блока входного трансформатора (шкаф трансформатора); многоуровневого инвертора (шкаф инвертора) и системы управления и защит с блоком ввода и отображения информации (шкаф управления и защит).
В шкафу входного трансформатора производится передача энергии от трехфазного источника питания входным многообмоточным трансформатором, который распределяет пониженное напряжение на многоуровневый инвертор.
Многоуровневый инвертор состоит из унифицированных ячеек – преобразователей. Количество ячеек определяется конкретным конструктивом и заводом-изготовителем. Каждая ячейка оснащена выпрямителем и фильтром звена постоянного тока с мостовым инвертором напряжения на современных IGBT транзисторах (биполярный транзистор с изолированным затвором). Первоначально выпрямляется входной переменный ток, а затем с помощью полупроводникового инвертора преобразуется в переменный ток с регулируемой частотой и напряжением.
Полученные источники управляемого переменного напряжения соединяются последовательно в звенья, формируя фазу напряжения. Построение выходной трехфазной системы питания асинхронного двигателя производится включением звеньев по схеме «ЗВЕЗДА».
Система управления защиты располагается в шкафу управления и защиты и представлена многофункциональным микропроцессорным блоком с системой питания от источника собственных нужд преобразователя, устройством ввода-вывода информации и первичными сенсорами электрических режимов работы преобразователя.
Потенциал экономии: считаем вместе
На основании данных, предоставленных компанией Mitsubishi Electric, оценим потенциал энергосбережения при внедрении преобразователей частоты.
Вначале посмотрим, как меняется мощность при различных режимах регулирования двигателя:
А теперь приведем пример расчета.
КПД электродвигателя: 96,5%;
КПД частотно-регулируемого привода: 97%;
Мощность на валу вентилятора при номинальном объеме: 1100 кВт;
Характеристика вентилятора: H=1,4 о.е. при Q=0;
Полное рабочее время за год: 8000 ч.
Режимы работы вентилятора согласно графику:
Из графика получаем следующие данные:
100% расхода воздуха – 20% времени работы за год;
70% расхода воздуха – 50% времени работы за год;
50% расхода воздуха – 30% времени работы за год.
Экономия между работой под номинальной нагрузкой и работой с возможностью регулирования скорости вращения двигателя (работа совместно с ЧРП) равна:
7 446 400 кВт*ч/год — 3 846 400 кВт*ч/год= 3 600 000 кВт*ч/год
Учтем тариф на электроэнергию равным — 1 кВт*ч / 5,5 руб. Стоит отметить, что стоимость взята по первой ценовой категории и усредненному значению для одного из промышленных предприятий Приморского края за 2019 г.
Получим экономию в денежном выражении:
3 600 000 кВт*ч/год*5,5 руб/кВт*ч= 19 800 000 руб/год
Практика реализации подобных проектов позволяет с учетом затрат на эксплуатацию и ремонты, а также стоимости самих преобразователей частоты добиться срока окупаемости в 3 года.
Как показывают цифры, в экономической целесообразности внедрения ЧРП сомневаться не приходится. Однако одной экономикой эффект от их внедрения не ограничивается. ЧРП осуществляют плавный пуск двигателя, значительно уменьшая его износ, но об этом я расскажу в следующий раз.
Igor_O
Для около-ИТ тематики в частотных регуляторах гораздо важнее то, что с помощью ЧРП можно добиться, что пусковой ток не будет превышать номинальный рабочий. А это значит, что такой привод можно подключить к ИБП и/или ДГУ не делая запас на пусковые токи (а пусковые токи у нагруженного асинхронного двигателя, например, компрессор кондиционера, до 7 номинальных).
И можно, таким образом, обеспечивать работу, например, систем охлаждения даже на то время, пока запускается ДГУ.
А если ЧРП не тиристорный, а с использованием IGBT, то еще и можно вешать такой привод на тот же ИБП, на котором висят ИТ-нагрузки…
А когда все охлаждение висит на ИБП, то это еще и имеет приятный побочный эффект в виде того, что такой ЦОД проще сертифицировать в Аптайме.
Aristovskiy Автор
Совершенно верно.
Статья писалась в первую очередь с позиции электротехнического направления. Ведь преобразователи частоты — это электрооборудование, которое получило широкое распространение именно в данной отрасли. Сфера IT — это уже современное направление применения.
kababok
а еще преобразователь частоты разгоняет асинхронники всех Тесл… ;)))))