Хорошее разрешение достижимо
В интернете много публикаций о том, как используя DVD-R диск и смартфон можно собрать спектрометр, однако характеристики таких устройств не позволяют проводить точные измерения. Мне же удалось сделать прибор с разрешением 0,3 нм.
Основные характеристики
Спектрометр работает в диапазоне 400-700 нм с разрешением 0,3 нм. Применяются сменные оптические щели шириной 50, 100, 200 и 300 микрон. Дифракционная решетка с шагом 740 нм изготовлена из DVD-R диска. Регистрация спектра выполняется зеркальной фотокамерой Nikon D5100. Прибор выполнен в крепком корпусе, позволяющем сохранять настройки при перемещениях.
Конструкция и изготовление прибора
Дифракционная решетка
Диск был расслоен на две половины и разрезан на части, которые после промывания спиртом были помещены в рамки. Дифракционная решетка готова.
Изготовление сменных оптических щелей
В дюралевой пластине сверлю отверстие диаметром 8 мм. Клеевым пистолетом закрепляю половинку лезвия безопасной бритвы, располагая режущую кромку по центру отверстия. Вставляю в отверстие щуп толщиной 50 мк, плотно прижимаю вторую половину лезвия и приклеиваю ее. Аналогично делаю щели 100 мк, 200 мк и 300 мк. Сменные оптические щели готовы.
Корпус спектрометра
Делаю деревянный корпус. Окрашиваю внутри и снаружи в черный цвет.
Оптика и регистрация спектра - фотоаппарат NIKON D5100
Примерно на 3000 пикселей матрицы приходится около 300 нм видимого спектра. Т.е. 1 пикселю соответствует 0.1 нм. Для надежной регистрации линии нам нужно два-три пикселя. Расчеты показывают, что для такого разрешения размеры оптической щели должны быть порядка 100 микрон. Было сделано несколько щелей для выбора лучшего варианта экспериментальным путем.
Чтобы получить такое разрешение необходим зеркальный фотоаппарат с хорошим объективом. Смартфон и веб-камера не подходят. Требуется большая апертура и ручные настройки. На данный момент на Авито можно приобрести подходящую камеру по цене от 5 до 10 тысяч рублей.
Настройка и калибровка спектрометра
Калибровка прибора проводилась перед каждой серией экспериментов по известному спектру компактной ртуть содержащей люминесцентной лампы.
Определение длины волны линий исследуемого спектра возможно без специального программного обеспечения. Ниже спектр лампы с линиями ртути 435,8 нм, 546,0 нм, 577,0 нм и 579,1 нм. Линия 611 это уже Европий.
Расстояние между линиями 2, 1 нм. Половина ширины линии на кадре не более 0,3 нм, что соответствует примерно 3 пикселям матрицы. Делаем вывод – разрешение прибора 0,3 нм. Что в дальнейшем подтвердится съемкой двойной линии натрия.
Для построения спектральных кривых можно использовать программу сайта Spectral Workbench
Измерение различных спектров
Были проведены несколько классических экспериментов.
Самый интересный эксперимент, ради которого и был изготовлен спектрометр - измерение спектра пламени костра
На фоне непрерывного спектра была зарегестрированна яркая линия, которую я назвал линией огня.
Обработка результата
Совмещаем спектр калибровочной лампы и исследуемый спектр на одном кадре. Зная расположение известных линий ртути, можно определить искомую длину волны, путем замеров и последующих расчетов.
Что это за линия и как она возникает - читайте в моей статье "Спектральный анализ пламени костра. Что делает огонь желтым – наночастицы углерода или соли натрия?"
Полезные ссылки:
Сайт Spectral Workbench. Используя программы на сайте можно обрабатывать спектры и получать графики интенсивности в зависимости от длины волны.
Информационная система «Электронная структура атомов». Очень удобный русскоязычный ресурс по спектральным данным атомов и ионов.
iliasam
Не было мыслей сделать рамановский спектрометр?
jar_ohty
Тут надо иметь в виду две вещи:
1. 1000 обратных сантиметров на 532 нм — это чуть больше 20 нм спектра. Чтобы не потерять важную информацию, надо отрезать линию «накачки» максимально близко и при этом максимально ее не пропустить. Иначе мы просто ничего не сможем увидеть на фоне рассеянного света этой первичной лазерной линии. Стоимость нужного интерференционно-поляризационного фильтра гмммм… расстроит.
2. Сигнал КР — очень слаб. Никакие иные детекторы, кроме ФЭУ со счетом фотонов или очень хорошей (здесь возникает страшное слово Hamamatsu) охлаждаемой ПЗС-линейки, тут немыслимы.
iliasam
Вот тут утверждается, что можно обычным фотоаппаратом обойтись: article.sapub.org/10.5923.j.jlce.20150304.02.html
jar_ohty
Ну, на чистых веществах с простым строением — конечно, хватит простого фотоаппарата. Я тоже пробовал, получалось, правда, с более скромными результатами. А вот когда понадобится изучать реальные объекты, в которых тот же бензол надо увидеть хотя бы на уровне ПДК — вот тут и понадобится все самое-самое.