Мы мгновенно без задержки идентифицируем человека как привлекательного для нас или нет. Но узнать, какие факторы и индивидуальные особенности внешности определяют эту спонтанную бессознательную симпатию до сих пор не удавалось. Порой привлекательность связывают с личными и культурными особенностями. Однако финские ученые нашли рациональный подход в этом абсолютно иррациональном мире вопросе.

Итак, существует ли идеальная пара? На основе данных ЭЭГ ученые научили генеративно-состязательные нейронные сети (GAN) предсказывать и воссоздавать лица, которые потенциально будут казаться нам привлекательными. Только представьте, итоговая точность предсказаний составила >80%. Интересно, что будет, если сеть сможет в перспективе влиять на подборку пары в Tinder и подобных приложениях? Но разберемся во всем по порядку.

Предыстория



Психологи по всему миру давно исследуют, что является метрикой привлекательности внешности. Конкретного ответа на это вопрос у них нет. Хотя им удалось выявить определенные закономерности. Так, среди важных черт выделяют геометрию, пропорции и симметричность/асимметричность лица. Помимо внешних визуальных стимулов психологи считают, что на восприятия меры симпатичности другого человека влияют наши гормоны, уровень самооценки и личная привлекательность, социальный опыт и пр.

Однако раньше всех этих данных было недостаточно, чтобы создать искусственно человека или пару со 100% совпадением. Существенного прогресса в изучении личных предпочтений удалось добиться финским ученым. И помог им в этом проведенный эксперимент.

Как проходил эксперимент



В проведенном исследовании приняли участие 30 сотрудников и студентов из Хельсинского университета. Для обучения GAN они использовали 30 тыс. фотографий знаменитостей. Так сеть научили создавать синтетические портреты. Всего их смоделировали 240.

Сначала участники эксперимента смотрели 32 изображения по 8 серий. С каждой из них они выбирали наименее привлекательные лица. После этого приступили к измерению реакций и отклика мозга.

С помощью электроэнцефалографии (ЭЭГ) ученые зафиксировали реакцию мозга на искусственные портреты. Добровольцам показывали изображения и следили за реакцией в реальном времени, фиксируя все наблюдения. Достоинство ЭЭГ в предоставлении данных об обратной реакции на триггеры: ощущения, события, когнитивное или моторное событие.

Что потом?


Благодаря интерфейсу мозг-компьютер данные передали GAN. И так удалось обучить сеть создавать привлекательные лица для конкретных добровольцев. Однако, до какой степени они будут привлекательными им предстояло еще проверить.

Спустя 2 месяца, ученые вновь собрали участников. Они поместили в подборки изображений как новые привлекательные, так и другие нейтральные и/или непривлекательные. Добровольцы получили матрицу из 24 картинок. Оценку привлекательности проводили по шкале от 1 до 5. Нажатием клавиш участники проставили оценки изображениям.

В итоге выяснилось, что 86,7% изображений, созданных GAN, участники эксперимента выделили как привлекательные. Что интересно — еще 20% изображений, которые потенциально создавались как непривлекательные, оказались все же симпатичными для добровольцев. То есть результат работы сети был ложноотрицательный.

Идеальная пара



Из доводов в пользу того, что система работает — большая часть именно привлекательно созданных изображений получили оценку больше 1 балла по сравнению с созданными, как нейтральные. Ученые сделали итоговый вывод, что GAN действительно научилась отделять реакции мозга на привлекательные и непривлекательные, причем делает она это с точностью в 83,3%.

В конце эксперимента ученые пообщались с испытуемыми. Все они оказались довольны экспериментом. И многие удивлялись, как нейросети удалось воссоздать идеальную красоту. Они просили копии фотографий себе. А некоторые указали на сходство изображения с их текущим партнером.

Shazam vs ЭЭГ?


Помимо изображений, ученые научились воссоздавать прослушиваемую музыку по активности мозга.

Музыка обладает различными характеристиками: ритм, тембр, мелодия, гармония. Кроме того, песни представляют собой определенную последовательность повторяющихся данных. Все эти музыкальные особенности воспринимаются определенным образом нашим мозгом. При получении стимула наши органы чувств реагируют по-своему.

Исследователи из Индии и Нидерландов смогли научиться воссоздавать из активности мозга, фиксируемой ЭЭГ, конкретные песни. Точность определения мелодии составила 85%.

Обучение сети проводили на 20 добровольцах, которые слушали 12 мелодий. Когда сеть работала на данных одного конкретного испытуемого, точность идентификации мелодии составила почти 85%. Когда процесс распознавания запустили без привязки к личности, то точность снизилась почти на 77%.