Добрый день, коллеги. В этой статье я бы хотел затронуть тему таблиц с типом Row. Этот тип таблиц для многих администраторов баз данных, долгое время оставался наиболее естественным типом, так сказать типом по умолчанию. Таблицы типа COLUMN в основнов встречались в хранилищах данных (Data Warehouse), то есть базах данных с преобладающей нагрузкой типа OLAP.
Основная идея инженеров компании SAP при разработке базы данных HANA, было объединение двух миров OLTP и OLAP приложений. В результате таблицы с колоночным хранением в базе данных HANA, стали таблицами по умолчанию, но несмотря на преимущества колоночных таблиц в большом количестве сценариев, база данных HANA продолжает использовать строковые таблицы. Об особенностях использования такого типа таблиц и пойдёт речь в этой статье.
Таблицы с типом Row хранятся в специальной области памяти, которая называется shared memory. При запуске базы данных эта область полностью загружается в память и остается там всё время, пока база данных находится в рабочем состоянии.
В таблицах с типом Row, все данные размещаются в строках друг за другом, что облегчает доступ ко всем строкам таблицы. А вот с доступом, ко всем значениям столбца немного сложнее, поскольку эти значения не могут быть переданы из основной памяти в CPU с той же эффективностью, как в случае хранения по столбцам. Компрессия данных при таком типе хранения также менее эффективна.
Классический подход для реляционных баз данных, в которых данные хранятся в табличном формате, заключается в хранении, напоминающем логическую структуру таблицы. Каждая запись храниться как объединенный кусок значений каждой колонки таблицы. Ниже представлена таблица с классическим типом хранения.
Этот дизайн имеет очевидное преимущество, заключающееся в прямом мэппинге представления логической таблицы и операций которые с ней выполняются на фактические манипуляции с данными, которые происходят в памяти. Такое представление проще для разработчиков базы данных и администраторов DBA.
У такого представления данных есть и свой недостаток, заключается он в том, что для многих операций в базе данных такой подход не очень эффективен. База данных не может получить прямой доступ к определенным колонкам таблицы. Вместо этого страницы с данными необходимо передать CPU для сканирования хранящихся строк по порядку, по идентификатору условия where для определенных столбцов.
Эти данные перемещаются из основной памяти (main memory) в кэш CPU, это оказывает влияние на производительность, особенно при массовой обработке данных, в таких случаях как хранилище данных и аналитические запросы. В то время как для смешанного типа нагрузки, при условии доступа к одной или нескольким записям со всеми колонками, этот метод хранения является предпочтительным, так как требования трансформации данных от внутреннего хранилища к внешнему представлению (также называемое проекцией) для клиента базы данных минимальны.
В базе данных HANA, таблицы с типом Row-store имеют целый ряд ограничений:
таблицы не могут быть секционированы
отсутствует алгоритм для сжатия таблиц
к колонке в такой таблице не может быть предоставлен отдельный доступ, а также параллельный доступ.
таблица не может быть выгружена из памяти
если таблица с строковым типом не может быть полностью загружена в память, сервер базы данных не сможет запуститься
для построения большинства информационных моделей, таблицы с этим типом не могут быть использована напрямую.
Для row-store таблиц, доступно два типа индекса: классический b-tree индекс и cpb+-tree (сжатый префикс b-tree) индекс – который оптимизирован для обработки символьных индексных ключей в памяти. Несмотря на то, что есть возможность выбрать тип используемого индекса, обычно в этом нет необходимости. SAP HANA будет использовать cpb+-tree тип определенный по полю или комбинации полей типа string, binary string, или decimal. Для всех остальных типов, будет создан классический b-tree индекс. Индексы по row-store таблицам не сохраняются в БД на постоянной основе, вместо этого они пересоздаются каждый раз при загрузке таблицы в память (запуске базы данных).
Управление многоверсионной конкуренцией (Multiversion Concurrency Control)
Multiversion Concurrency Control (MVCC) это концепция, которая гарантирует консистентность транзакционных данных путем изоляции транзакций которые получают доступ к одним и тем же данным в одно и то же время. Для того чтобы это было реализовано параллельно, сохраняется несколько версий записи. Проблемы с MVCC обычно связаны с большим количеством активных версий записи. Старые версии время от времени должны удаляться для того, чтобы освободить память.
Колоночные и строковые таблицы реализуют это функцию совершенно по-разному.
Для row store таблиц, каждая измененная страница сначала копируется и размещается в цепочке версий страниц, где каждая версия имеет состояние данных на определенную операцию commit. Эти цепочки страниц хранятся в виртуальном контейнере в памяти, который называется undo. Представление для мониторинга M_UNDO_CLEANUP_FILES показывает детальную информацию по этим внутренним виртуальным файлам-контейнерам.
За удаление старых версий записи отвечает Garbage Collector. Сборка мусора происходит после операции commit, а также периодически (по умолчанию каждый час). Сборщик мусора может удалить лишь те старые версии записей, для которых транзакции обновления были завершены (была выполнена операция commit или rollback). В случае, если транзакция изменяет десятки или тысячи строк без фиксации изменений (операции commit), вы можете попасть в ситуацию, когда большой объем избыточных данных необходимо хранить в основной памяти (main memory), так как в базе данных будут храниться десятки тысяч блокированных версий записей и новых активных версий записи. Я уже наблюдал картину, когда по большим таблицам в памяти хранилось до 8 млн. версий записей.
Если обраться к представлению с потоками (например M_SERVICE_THREADS), то в поле Thread Type периодическая сборка мусора будет обозначаться как “MVCCGarbageCollector”. Для того, чтобы найти транзакции, которые зафиксировали свои изменения, необходимо в представлении потоков, сделать выборку по условиям THREAD_TYPE=’SqlExecutor’ и THREAD_METHOD=’CommitTrans’.
Реорганизация Row-store области
Реорганизация Row-store области представляет собой процесс дефрагментации сегментов памяти с целью более компактного хранения. Несмотря на значительные улучшения в самом процессе реорганизации, который претерпел существенные изменения начиная еще с HANA 1.0, сама по себе процедура всё еще остается проблемной. Об этом я расскажу ниже, а сейчас немного общей информации.
Пространство Row store увеличивается путем выделения сегментов памяти размером 64 Мб. Сегмент внутренне разделен на страницы фиксированного размера. Когда row-store таблице требуется больше памяти для хранения записей, для неё выделяются свободные страницы из существующего сегмента. Если свободных страниц в сегменте больше нет, выделяется новый сегмент.
Удаление большого числа записей может привести к появлению разрозненных сегментов. В этом случае может помочь реорганизация области row store с целью более компактного хранения в памяти. Страницы из разрозненных сегментов переносятся в другие сегменты, в результате освобождается свободное пространство. SAP рекомендует выполнять реорганизацию Row Store пространства при условии, что его размер превышает 10Gb при этом свободных блоков более 30%. В базе данных HANA доступно два режима реорганизации пространства ONLINE и OFFLINE.
ONLINE реорганизация стала доступна с версии HANA 1.0 SPS8. С тех пор этот режим постоянно улучшается с целью снижения влияния на бизнес процессы и повышения эффективности хранения в области Row store. До версии SAP HANA 2.0 SPS3 включительно, при проведении онлайн реорганизации, на таблицы участвующие в реорганизации устанавливалась эксклюзивная блокировка, в результате чего, изменения записей по этим таблицам были невозможны. Начиная с версии SAP HANA 2.0 SPS4 в процессе реорганизации произошли изменения, теперь при онлайн реорганизации блокировка устанавливается на уровне строки, а не таблицы целиком. В соответствии с рекомендациями SAP online реорганизация необходимо запускать в период минимальной нагрузки для того, чтобы добиться лучшего результата. Именно в этом и кроется основная претензия к этому режиму реорганизации, он не позволяет добиться такого же результата, как в случае OFFLINE реорганизации.
До версии HANA 2.0 SPS4, компания SAP рекомендовала использовать именно OFFLINE режим, для получения лучшего результата. При этом OFFLINE режим несёт в себе один существенный недостаток, логически вытекающий из его названия. Систему работающую в режиме 24х7 для реорганизации row-store пространства никто останавливать не будет. По этому, обычно, OFFLINE реорганизацию совмещают с другими работами, требующими останова системы.
Внимание! OFFLINE реорганизация может существенно увеличить время запуска базы данных HANA.
Начина я с версии SAP HANA 2.0 SPS4 стал доступен режим автоматической ONLINE реорганизации. По умолчанию раз в час запускается проверка на фрагментированность области row store. Если показатель полезного использования памяти менее 60% от размера области row-store, запускается автоматическая реорганизация. Пороговое значение фрагментированности, а также частота запуска проверки может быть изменена. Подробнее о автоматическом режиме можно прочитать в ноте 2789255 - Automatic Online Row Store Reorganization.
На этом я бы хотел завершить краткий обзор таблиц с типом хранения Row. Несмотря на преимущества колоночных таблиц, в базе данных HANA продолжают использоваться и строковые таблицы. В основном такие таблицы используются как технические или настроечные с относительно небольшим количеством записей, при этом основная роль отдана таблицам с колоночным типом хранения.
sargon5000
Неплохо бы автору сказать хоть пару фраз про СУБД HANA. Где она применяется, чем она лучше или хуже обычных баз данных?
screemmer Автор
HANA является основной СУБД компании SAP. Специалиcтам в области SAP эта СУБД очень хорошо знакома, по сути это не просто база данных, скорее технология, обладающая собственной встроенной платформой для разработки и сервером приложений. SAP HANA применяется во всех основных продуктах компании SAP. Инсталляции продуктов SAP в основном приходятся на крупные компании, такие как Мегафон, Лента, X5 Retail Group, Газпром и многие-многие другие, но существует и бесплатная версия для разработчиков. В одной из сових статей я рассказывал о том, как можно развенуть ее на домашнем компьютере. Что касается лучше она или хуже, то давать такие оценки дело не благодарное. Это база данных in-memory и соответственно у нее есть преимущество перед классическими транзакционными базами данных, у которых основная часть данных находится на диске.