Построение идеальной оптики в Zemax

Введение
Всё больше современные системы автоматизации оснащаются оптическими устройствами для решения задач позиционирования, распознавания, наблюдения и др. Построение идеальных оптических систем при помощи программы расчета Zemax может оказаться полезным и непрофессионалам, например, для лучшего понимания теории, особенностей оптических устройств и выполнения прикидочных расчетов оптических систем. В этой работе рассмотрены приёмы построения идеальной оптики в среде Zemax, даны примеры расчета диапазона автофокусирования фотокамеры, построения эквивалентной схемы монокуляра МГТ 2.5x17.5, объектива фотокамеры SUNNY P13N05B смартфона Huawei P7 и замены идеальных оптических элементов реальными.


Идеальная оптика
Изображение в идеальной оптике, в которой отсутствуют искажения, строится по законам параксиальной оптики. Термин параксиальный означает «вблизи оси». Параксиальная оптика хорошо описываются линейными выражениями, которые при малых углах заменяются линейными уравнениями. В параксиальной области любая реальная система ведет себя как идеальная.
Расчеты идеальных линз в среде Zemax выполняются с допущением, что линзы имеют параксиальные свойства не только вблизи оси, но и на всей рабочей поверхности, которая действует как идеальная тонкая линза c единичным показателем преломления воздуха.
Параксиальную оптику целесообразно использовать в качестве эталона, с которым сравниваются аберрации (искажения) реальной оптики.
Переносить результаты расчетов параксиальной оптики на реальные системы следует с осторожностью, особенно при построении систем у которых свойства вблизи оптической оси и на удалении значительно отличаются.
Разработан целый ряд приёмов уменьшения аберраций и габаритных размеров линз: применение несферических поверхностей, составных линз, неоднородных оптических материалов, и др. Но как не была бы устроена реальная линза (Петцваля, Гаусса, Барлоу, ...) ее характеристики могут только приближаться к характеристикам идеальной линзы.

Построение изображения собирающей линзой
Рассмотрим случай, когда от каждой точки плоскости предмета расходятся лучи во все стороны как от точечных источников. Из крайней точки объекта А, как показано на Рис. 1. в соответствующую точку В на плоскости изображения попадут только те лучи, которые сфокусированы линзой. Количество лучей предмета попадающих в плоскость изображения пропорционально диаметру линзы. Чем больше лучей от предмета попадает в плоскость изображения, тем выше яркость изображения.

Рис. 1. Сопряженные точки. Ход лучей от точки предмета к соответствующей точке
изображения на плоскости фотоприемника.

Для минимизации вычислений нахождения изображения рассматривают ход только нескольких лучей, например, как на Рис. 2: луч, идущий от объекта вдоль оптической оси; луч, проходящий через центр линзы и луч, параллельный оптической оси, преломляемый линзой и проходящий через главный фокус линзы (точка F на оптической оси).

Рис. 2. Минимальные построения для нахождения расстояния до плоскости изображения, величины изображения и увеличения линзы. Для параксиальной оптики продольное увеличение (связано с расстояниями) равно квадрату линейного увеличения (перпендикулярно оси), а угловое увеличение обратно пропорционально линейному.

Связь расстояний до предмета и изображения. Глубина резкости
Построение зависимости между зоной фокусировки объектива и глубиной резкости в пространстве предметов [1] показано на Рис. 3. Когда расстояние до предмета равно бесконечности, плоскость сфокусированного изображения проходит через главный фокус (смещение плоскости изображения относительно фокуса равно нулю). Минимальная глубина резкости в пространстве предметов достигается при максимальном удалении плоскости изображения (в зоне фокусировки) относительно главного фокуса.

Рис. 3. Зависимость между зоной фокусировки объектива и глубиной резкости в пространстве предметов.

Функции среды проектирования Zemax
Функции среды Zemax, наиболее часто используемые при проектировании оптических систем, присвоены отдельным кнопкам основного меню. Назначение этих кнопок показано на Рис. 4.


Рис. 4. Интерфейс программы Zemax.

Типы поверхностей элементов оптических систем, радиусы поверхностей, расстояния между элементами и другие параметры заносятся в таблицу редактора, в которой каждая строка содержит параметры одного элемента. Связь параметров таблицы и элементов оптической схемы показана на примере Рис. 5.

Рис. 5. Связь оптической схемы с параметрами таблицы.

Идеальная линза в Zemax
Для моделирования линзы с параксиальной поверхностью в Zemax необходимо задать фокусное расстояние и, при необходимости, включить расчет разницы оптических траекторий проходящих через линзу (установить статус OPD режима в 1 в соответствующей строке таблицы редактора). По умолчанию, OPD расчет не выполняется (статус OPD равен нулю [2]).
Построим в Zemax идеальную линзу, например, с диаметром входного зрачка 10 мм и фокусным расстоянием 15 мм, собирающую параллельные лучи удаленного предмета в одной точке.
1. Откроем новую таблицу: меню > кнопка

Рис. 6. Начальное состояние таблицы оптической схемы редактора Zemax. В строках таблицы (NN 0; 1 и 2) содержатся параметры предмета OBJ, апертурной диафрагмы STO и изображения IMA.

2. Добавим поверхность между диафрагмой и изображением: выделим последнюю строку строку IMA > меню Lens Data Editor > Edit > Insert Surface

Рис. 7. Добавлена стандартная поверхность N2.

3. Выберем «Параксиальный» тип поверхности: строка N2 > колонка Surf:Type > окно свойства — Properties > Surface Type > Paraxial

Рис. 8. Поверхность N2 изменена на идеальную (Paraxial) линзу с фокусным расстоянием 100 мм. Расстояние между линзой и изображением равно нулю. Расстояние между линзой и диафрагмой STO также равно нулю.

4. Изменим фокусное расстояние со 100 (по умолчанию) на 15 мм в колонке таблицы Focal Length
5. Зададим расстояние 15 мм от линзы до изображения в колонке Thickness

Рис. 9. Фокусное расстояние линзы изменено на 15 мм. Расстояние между линзой и изображением увеличено до 15 мм.

6. Зададим диаметр входного зрачка 10 мм: Основное меню > кнопка > закладка Aperture > Aperture Value > 10

Рис. 10. Задан диаметр входной апертуры оптической схемы: 10 мм.

7. Построим оптическую схему: Основное меню > кнопка

Рис. 11. Оптическая схема в окне Layout. Координаты диафрагмы и линзы совпадают (расстояние между ними равно нулю) Координаты “мышки” на схеме (в масштабе оптической схемы) отображаются в заголовке рисунка.

8. На схеме Layout не показаны лучи слева от идеальной линзы (выделена красным), идущие от предмета расположенного на бесконечном расстоянии, которое обозначено как Infinity в колонке Thickness нулевой строки OBJ таблицы. Чтобы показать часть этих лучей на входе линзы введем поверхность на расстоянии, например, 7 мм перед апертурной диафрагмой STO.

Рис. 12. Добавлена поверхность перед апертурной диафрагмой STO.

9. Добавим поверхность 1 к отображаемой части оптической схемы и увеличим количество лучей до 7 для наглядности: меню рисунка Layout > Setting > First Surface = 1 > Number of Rays = 7.

Рис. 13. Показаны лучи на отрезке 7мм до диафрагмы. Увеличено количество лучей с 3-х до 7.

10. Сделаем невидимой первую поверхность: строка N1 таблицы > колонка Surf:Type > окно свойства — Properties > закладка Draw >
11. Обновим окно Layout оптической схемы через кнопку основного меню или дважды «кликнув» в зоне окна схемы.

Рис. 14. Первая поверхность оптической схемы сделана невидимой.

В окне Layout можно отслеживать изменения табличных параметров оптической системы и параметров основного меню, показанных на Рис. 4 и Рис. 5.

Модель составной линзы фотокамеры смартфона
Для построения идеальной модели возьмем составную линзу фотокамеры SUNNY P13N05B смартфона Huawei P7 (Рис. 15). Линза смартфона состоит из пяти пластиковых элементов. Пример составной линзы показан на Рис. 16.

Рис. 15. Размеры [3] и фотографии фотокамеры SUNNY P13N05B с фотодиодной матрицей SONY IMX214 13 МП. 1. – модуль фотокамеры с фотодиодной матрицей; 2- линза камеры; 3 – катушка привода автофокусировки — перемещения объектива относительно матрицы датчика.

Камера P13N05B имеет следующие характеристики.
• Размер линзы: 1/3”
• Размер фотодиодной матрицы: 6,1 мм (H) ? 4,5 мм (V)
• Диагональ активной зоны матрицы: 5,9 мм
• Состав линзы: 5 пластиковых элементов (см. Рис. 16)
• Фокусное расстояние: 3,79 мм
• Апертурное число (f/#): 2
• Угол поля зрения: 75°±3°
• Глубина резкости: от 7 см до ?
• Диапазон привода автофокусировки: ? 0,24mm

Рис. 16. Пример составной линзы. Линза смартфона iPhone 6.

Параметры оптической схемы идеального объектива фотокамеры (см. Рис. 17) заданы в таблице Lens Data Editor и в окнах клавиш основного меню Zemax:. Функция выбираемая из списка функций выделенной ячейки колонки Thickness таблицы автоматически устанавливает наилучшее расстояние между линзой и изображением. Для построения наилучшего изображения удаленного на бесконечное расстояние предмета плоскость фотоприёмника должна проходить через точку главного фокуса отстоящей от линзы на 3,79 мм.

Рис. 17. Оптическая схема параксиальной линзы фотообъектива. Предмет удален на бесконечное расстояние.

Приближение объекта к линзе на 10 мм с сохранением угла обзора 76о/2 в окне Field Data (Рис. 18) увеличило расстояние между линзой и изображением до 6,10 мм. Следовательно изменение автофокуса при приближении объекта с бесконечности до 10 мм равно 2,31 мм (как 6,10 мм – 3,79 мм).

Рис. 18. Построение лучей от объекта находящегося в 10 мм от параксиальной линзы фотокамеры и нахождение положения автофокуса.

В спецификации фотокамеры P13N05B указано, что глубина резкости в пространстве предметов лежит в пределах от 7 см до ? (бесконечности). Установим предмет на минимальной дистанции в 70 мм от апертурой линзы. Zemax устанавливает расстояние между линзой и плоскостью изображения 4 мм (см. выделенную ячейку таблицы на Рис. 19). Таким образом, для построения качественного изображения предмета находящегося в зоне от 7 см до ? требуется изменять расстояние между линзой и фотодатчиком от 4 до 3,79 мм. Требуемое изменение 0,21мм перекрывается диапазоном привода автофокусировки фотокамеры 0,24 мм.

Рис. 19. Расстояние до изображения равно 4 мм при расстоянии до объекта 70 мм. Фокусное расстояние линзы равно 3,79 мм.

Зависимость диапазона фокусировки от фокусного расстояния объектива
Зона фокусировки зависит не только от дистанции до предмета, но и от главного фокуса линзы (объектива). На Рис. 20 показана геометрия нахождения зон фокусировки для линз с главным фокусом F1=7,5 мм и F2=19 мм и положений предмета в диапазоне AB = 35… 52 мм. Для настройки резкости с линзой F1 требуется изменять расстояние меду главным фокусом линзы и плоскостью изображения в диапазоне 0,8 мм, тогда как для линзы с F2 этот диапазон вырос до 12 мм.

Рис. 20. Пример построения зон фокусировки для линз с разными фокусными расстояниями F1 и F2.

Идеальные телескопы
Сравнительные размеры телескопов Кеплера и Галилея для одинакового увеличения F1/F2 показаны на Рис. 21. Телескоп Кеплера с собирающими линзами даёт перевернутое изображение. Более компактный телескоп Галилея включает рассеивающую линзу и даёт прямое изображение.

Рис. 21. Схема телескопов Кеплера (а) и Галилея (б) при одинаковом увеличении F2/F1.

Миниатюрный монокуляр МГТ 2,5x17,5 СССР, ЛЗОС (Лыткаринский завод оптического стекла) собран по схеме Галилея (Рис. 22). Он имеет следующие характеристики.
• Увеличение: 2,5 крат(раз)
• Диаметр объектива: 17,5 мм
• Угол поля зрения: 13,5 град
• Разрешающая способность: 15 угл. сек
• Предел фокусировки окуляра: -5...+5 диоптр
• Габаритные размеры: 22 x 38 мм

Рис. 22. Вид и примерные размеры миниатюрного монокуляра МГТ 2,5x17,5. Предмет находится справа.

Эквивалентная идеальная оптическая схема монокуляра МГТ 2,5x17,5 в ZEMAX показана на Рис. 23. Схема состоит из собирающей и рассеивающей линз с главными фокусами 37,5 мм и -15 мм соответственно, имеющими отношение 2,5 раз. Диаметр собирающей линзы 2х8,75 мм.


Рис. 23. Табличные данные и идеальная оптическая схема монокуляра МГТ 2,5x17,5. Параллельные лучи идут от предмета удаленного на бесконечное расстояние.

Вариант замены параксиальной линзы реальной
Заменим первую параксиальную линзу (диаметр: 17,5 мм; фокусное расстояние: 37,5 мм) монокуляра ахроматической линзой из каталога Edmund Optics [4]. Чтобы минимизировать выборку линз установим следующие условия: категория — Achromatic Lenses; диаметр – 18 мм; эффективная фокальная длина EFL 30-39.99 мм; диапазон длин волн — 425 — 675 нм.
Ближайшая к требуемым параметрам линза: 18mm Dia. x 35mm FL, VIS 0° Coated, Achromatic Lens, Stock No. #47-706 (номер по каталогу).
Для построения ахроматической линзы в Zemax из ее спецификации возьмем параметры перечисленные в Таблица 1. Параметры можно найти и на чертеже линзы PDF drawing сайта Edmund Optics [4] или на Рис. 24.
Таблица 1. Параметры составной ахроматической линзы Edmund #47-706
Параметр Значение Примечание
Diameter 18,0 мм Диаметр
Clear Aperture CA 17,0 мм Диафрагма
Effective Focal Length 35,0 мм Эффективное фокусное расстояние
Center Thickness CT 1 6,01 мм Толщина 1-го элемента по оси
Center Thickness CT2 1,60 мм Толщина 2-го элемента по оси
Radius R1 (mm) 24,26 мм Радиус первой поверхности
Radius R2 (mm) 16,23 мм Радиус второй поверхности
Radius R3 (mm) -152,99 мм Радиус третьей поверхности
Substrate N-BAF10 / N-SF10 Материалы элементов


Рис. 24. Чертеж ахроматической линзы Edmund #47-706.

Замена параметров первой линзы идеального телескопа (строка N2 таблицы Рис. 23) линзой Edmund #47-706 даёт вариант, представленный на Рис. 25.

Рис. 25. Вариант оптики телескопа с реальной ахроматической линзой. Выделенное в таблице красным расстояние между линзами найдено ручным смещением движка Slider.

Расстояние между линзами (выделенное красным в таблице Рис. 25) изменялось ползунком Slider в ручную до момента когда лучи на выходе второй (идеальной линзы) установились параллельными главной оси (в этом положении фокусные расстояния линз телескопа находятся в одной точке). Действие ползунка в реальном времени отображается смещением элементов оптической схемы и изменением траекторий лучей на оптической диаграмме окна Layout. Ползунок можно открыть через основное меню Zemax > Tools > Miscellaneous > Slider.
Если на выходе телескопа поставить дополнительную параксиальную собирающую линзу (элемент N6 в таблице и красная плоскость на оптической схеме Рис. 26), то можно увидеть вносимые реальной линзой искажения (см. часть диаграмм Zemax на Рис. 26).

Рис. 26. Оптическая схема и диаграммы искажений, вносимые реальной линзой.

Литература
1. Сайт Optics Realm. Видеоуроки по проектированию в среде Zemax и теории оптики. www.opticsrealm.com
2. Zemax Help > Optical Design Program User's Guide .pdf
3. H&L ELECTRICAL MANUFACTORY LIMITED hnl.en.e-cantonfair.com/products/sunny-brand-p13n05b-imx214-sony-sensor-13-0m-pixel-mipi-csi-1080p-sunny-cmos-camera-module-552104.html
4. Edmund Optics. www.edmundoptics.com/optics/optical-lenses
5. Dr. Bob Davidov. Компьютерные технологии управления в технических системах portalnp.ru/author/bobdavidov.
Поделиться с друзьями
-->

Комментарии (3)


  1. Karroplan
    20.06.2016 21:24

    искажений… аберраций!!! имя им — Легион! ;)


  1. Drunya323
    21.06.2016 11:51

    Подойдет ли эта программа для расчета оптики не в видимом спектре — например, в ближнем ИК?


    1. dr_bob_davidov
      21.06.2016 17:10

      Да, только необходимо ввести соответствующие длины волн в окне Wavelength Data, которое открывается кнопкой Wav меню см. Рис.4