Вводим формат мини-кейсов, где я и коллеги разбираем одну конкретную проблему и даем советы. Главное требование — приберечь воду для благих целей, давать выжимку.

Проблема: как проводить какие-то тестирования, оценку экспериментов, если конверсий на сайте мало?

image
Выбрали период месяц, все пользователи.

Мало конверсий — мало данных. Любые выводы при таком раскладе мало чем отличаются от гадания на ромашке или консультации с секретарем.

Например, мы пытаемся протестировать гипотезу «Пользователи с Москвы конвертируются лучше, чем пользователи с регионов», включаем соответствующий сегмент и получаем одинокую вершину. Аналитик рыдает.

image
Вот как конвертируются москвичи

Чтобы спасти ситуацию, пытаемся выкрутить период на квартал или год, но упираемся в ограничения:

  • цели были добавлены недавно и по ним отсутствует статистика, или
  • нужно быстро принимать решения в будущем, тестировать гипотезы по 3-6 месяцев расточительно

Когда я сталкивался с такой проблемой, то ничего не оставалось, как скатываться к поведенческим метрикам и анализировать по показателю отказов и времени на сайте. Но это не те показатели, которые стоит воспринимать серьезно при подобном анализе.

Маркетологи из интернетов рекомендуют в этой ситуации разметить не 2 цели, а все микро-конверсии, которые намекают на «теплоту» пользователя:

  • написал в онлайн-консультант
  • заказал обратный звонок
  • скачал прайс
  • записался на монтаж / замер / тест-драйв
  • добавил в корзину
  • просмотрел более 20 страниц и т.д.

И это не решение проблемы

image
Дополнительные цели конвертируются слабо

Вы можете сделать и 20 целей, но если каждая конвертирует так себе, никакого анализа не выйдет. Будем принимать решение, опираясь на тех, кто положил в корзину, или тех, кто заказал обратный звонок? И что бы мы ни выбрали, это пойдет вразрез логике и статистической значимости — слишком мало данных.

Это касается и трафиковых сайтов, где у пользователя масса вариантов для заказа: от классической корзины до вайбера. Большое количество транзакций размазывается по целям и снова получаем нехватку данных — приходится тратить больше времени, прежде чем принять решение.

Решение на базе Яндекс Метрики


Формируем составную цель и считаем, что человек «горячий», если выполнил хотя бы одну цель из списка

  • или оформил заказ
  • или положил в корзину
  • или написал в консультант
  • или сделал что-то еще полезное

Главное не добавить в список что-то странное, что моментально превратит «горячую» аудиторию в «еле теплую», например цель «Просмотрел 2 страницы», тогда конверсия легко достигнет 50%, но толку.

image
Пример настроенной цели, которая фиксирует любое целевое действие и засчитывает конверсию на пользователя

Теперь что бы ни сделал пользователь из этого списка, засчитывается конверсия и я понимаю, что он мой, тепленький :) Аналитик прыгает от радости, ведь теперь для проверки гипотез у него хватает данных.

А что там с Analytics?


Гибкость и возможности системы радуют. Если у вас мало конверсий, можно

Ничего не делать


В ряде отчетов Analytics позволяет выбрать нужные цели для анализа: конверсии по ним суммируются. Например, отчет «Конверсия > Атрибуция > Инструмент сравнения»

image
Любимый отчет по атрибуциям, где видны достижения цели и CPA. Выбираем нужные и смотрим на таблицу.

Создать общую цель по аналогии с Метрикой


В настройках представления «Вычисляемые показатели», складываем нужные цели A+B+C. Чтобы посчитать еще и конверсию: (A+B+C) / Сеансы

image

Пользовательскую метрику можно увидеть только в собственных отчетах, создаем в «Специальные отчеты > Мои отчеты». Я вывел только эту метрику для примера.

image

Создать «умную цель»


Считаю, что это плохая идея. Допускаю как дополнительный сигнал, но не полную замену целей и вот почему.

Умные цели изначально создавались как помощь в оптимизации рекламных кампаний Adwords. Причем для тех рекламодателей, которые даже не в состоянии разметить свои цели на сайте.

Цитата из справки:
Используя машинное обучение, «умные цели» обрабатывают десятки сигналов, связанных с сеансами на сайте, чтобы определить, какие из них чаще всего приводят к конверсиям. Учитываются такие сигналы, как длительность сеанса, число страниц за сеанс, местоположение, устройство и браузер.
Analytics по поведенческим метрикам пытается понять, какая аудитория более качественная и должна лучше конвертироваться. Adwords старается выкупить больше такой аудитории. Вы, вероятно, должны ощутить сильное снижение стоимости заказа (CPO) с данного канала.

И, черт возьми, Analytics действительно хорошо вычленяет качественную аудиторию, но «некачественная» аудитория тоже принесла конверсии и доход.

image
Качественная аудитория под флагом «Yes»

Если будем оптимизировать рекламу с оглядкой только на этот показатель, не уроним ли количество заказов? Мы не использовали «умные цели» как опорную точку в оптимизации рекламных кампаний, поэтому мысль выше — предположение. Снижение CPO, конечно, хорошо, но только когда количество O(rders) при этом не падает также стремительно. Так ведь можно заиграться и бизнес оставить без работы.

Комментарии (0)