Однажды крестьянину понадобилось перевезти через реку волка, козу и капусту. У крестьянина есть лодка, в которой может поместиться, кроме самого крестьянина, только один объект — или волк, или коза, или капуста. Если крестьянин оставит без присмотра волка с козой, то волк съест козу; если крестьянин оставит без присмотра козу с капустой, коза съест капусту.
В этой статье мы попытаемся найти обобщенное решение для такого типа головоломок и для этого будем использовать алгебраические эффекты.
Начнем с самого простого — маршрута перемещений. Так как мы не знаем заранее, через какое гарантированное количество шагов мы получим решение, можно построить бесконечный маршрут, все равно мы будем вычислять его лениво:
data Direction = Back | Forward
route :: [Direction]
route = iterate alter Forward
alter :: Direction -> Direction
alter Back = Forward
alter Forward = Back
Так как мы собираемся построить обобщенное решение, то и абстрагируемся от персонажей тоже. Мы построим нетранзитивное симметричное отношение порядка между элементами множества персонажей (поделитесь в комментариях, если для этого есть свое устоявшееся название):
data Character = Wolf | Goat | Cabbage deriving Eq
class Survivable a where
survive :: a -> a -> Ordering
instance Survivable Character where
survive Wolf Goat = GT
survive Goat Wolf = LT
survive Goat Cabbage = GT
survive Cabbage Goat = LT
survive _ _ = EQ
Зачем вообще использовать эффекты? Эффекты помогают бороться со сложностью, которая присуща любой предметной области. Значит, для того, чтобы определить какие эффекты использовать для решения головоломки, стоит подумать над тем, с какими сложностями мы можем столкнуться, когда попробуем описать решение задачи с помощью кода:
- Чтобы найти решение, при котором все персонажи будут перевезены на противоположный берег, надо перебрать много вариантов перестановок. Для этого мы будем использовать эффект множественности, которого можно добиться с помощью обычного списка.
- Еще нам нужно запоминать местоположение персонажа, чтобы проверять условия совместимости с другими персонажами (волк ест козу, коза ест капусту) и кого можно посадить на лодку. Мы можем хранить состав двух берегов type River a = ([a],[a]) c помощью эффекта состояния State (River a).
- Лодка может взять кого-нибудь на борт, а может и не брать — тут нам пригодится эффект частичности с Maybe.
В коде я буду использовать свою экспериментальную библиотеку joint (на Хабре есть две статьи, объясняющие ее суть — первая и вторая), но при желании решение можно перенести на transformers или mtl.
Итак, у нас есть три разрозненных эффекта: состояние, множественность, частичность. Теперь надо решить, как мы собираемся их скомпоновать между собой:
- В аппликативной/монадной цепочке вычислений для Maybe, если мы где-то получили Nothing, то и результат всего вычислений будет Nothing. Мы оставим его отдельно, так как не хотим, чтобы при отправлении пустой лодки (без персонажа, крестьянина мы не учитываем) мы потеряли весь прогресс в нахождении решения.
- Каждый последующий выбор хода (эффект множественности) должен опираться на состав текущего берега (эффект состояния), так как мы не можем взять персонажа в лодку, если она находится на другом берегу. Следовательно, нам нужно эти эффекты сцепить в трансформер: State (River a) :> [].
Один ход в головоломке можно описать как последовательность действий:
- Получить состав персонажей на текущем берегу
- Выбрать следующего персонажа для транспортировки
- Переместить персонажа на противоположный берег
step direction = bank >>= next >>= transport
Давайте пройдемся по каждому шагу подробнее.
В зависимости от направления перемещения лодки, применяем линзу для источника отправления к состоянию всей реки и получаем состав текущего берега:
bank :: (Functor t, Stateful (River a) t) => t [a]
bank = view (source direction) <$> current
Выбор следующего персонажа происходит так: получая набор персонажей с берега (предыдущее выражение bank), мы формируем пространство выбора, добавляя к этому самому пространству пустую лодку:
\xs -> Nothing : (Just <$> xs)
Для каждого кандидата (пустая лодка (Nothing) — тоже кандидат) проверяем чтобы на оставшемся берегу не оставалось персонажей, которые были бы не прочь полакомиться друг другом:
valid :: Maybe a -> Bool
valid Nothing = and $ coexist <$> xs <*> xs
valid (Just x) = and $ coexist <$> delete x xs <*> delete x xs
coexist :: Survivable a => a -> a -> Bool
coexist x y = survive x y == EQ
И когда мы отфильтровали пространство выбора персонажей, поднимаем эффект множественности и возвращаем каждый элемент из этого пространства выбора:
next :: (Survivable a, Iterable t) => [a] -> t (Maybe a)
next xs = lift . filter valid $ Nothing : (Just <$> xs)
Остался последний шаг — фактическая транспортировка c помощью линз: удаляем персонажа с берега отправки и добавляем к берегу назначения:
leave, land :: River a -> River a
leave = source direction %~ delete x
land = target direction %~ (x :)
Если в лодке был персонаж — изменяем состояние реки, иначе ход был холостым:
transport :: (Eq a, Applicative t, Stateful (River a) t) => Maybe a -> t (Maybe a)
transport (Just x) = modify @(River a) (leave . land) $> Just x where
transport Nothing = pure Nothing
Было бы неплохо посмотреть на работу программы в действии. Для нахождения решения нам нужно как минимум совершить семь шагов по маршруту:
start :: River Character
start = ([Goat, Wolf, Cabbage], [])
solutions = run (traverse step $ take 7 route) start
И у нас есть два решения:
Полные исходники можно посмотреть здесь.
0xd34df00d
Спасибо за статью! Приятно видеть примеры полезности систем эффектов.
Отношение порядка по определению транзитивно.
Олсо,
Я бы вообще сделал
isCompatible :: a -> a -> Bool
(всё равно вы потом проверяете, вернуло ли вашеsurvive
EQ
, и конкретный порядок вам не нужен).Так что это просто нетранзитивное симметричное отношение. Хорошего названия для него я не знаю.
CrazyOpossum
Множество пар, иначе граф (неориентированный)?