В данной статье не будем останавливаться на юридических аспектах подаваемых уведомлений о КИК, об участии в КИК, рассмотрим техническую сторону вопроса.
Бесспорно, если холдинг, о котором идет речь представляет себя простые структуры вида ООО->КИК->россиянин, то, что-то строить здесь с привлечением машины нецелесообразно, другое дело, если структура ветвится, двоится и нет числа этим сплетениям.
Рассмотрим несколько существующих графических решений, которые упростят работу.
Для удобства визуализации будет использоваться среда jupyter notebook и python.
Networkx
Данное решение самое древнее из представленных и не может похвастаться своей интерактивностью. О данном пакете есть такая же древняя статья на Хабре.
Однако старое не значит плохое, и данный вариант один из наиболее удачных как в плане рисования, так и в вычислительном.
Установим и импортируем модуль через jupyter:
!pip install networkx
import networkx as nx
Также импортируем иные доп. модули, которые помогут нарисовать фигуры:
from matplotlib import pyplot as plt
%matplotlib inline
plt.rcParams.update({
'figure.figsize': (7.5, 7.5),
'axes.spines.right': False,
'axes.spines.left': False,
'axes.spines.top': False,
'axes.spines.bottom': False})
Построим с помощью networkx первую сеть:
from pathlib import Path
data_dir = Path('.') / 'data'
# Read edge list
G = nx.read_edgelist('example.edgelist')
# Draw network
#pos = nx.spring_layout(G)
pos = nx.spectral_layout(G)
#pos = nx.planar_layout(G)
nx.draw_networkx(G, pos)
plt.gca().margins(0.15, 0.15)
Вот, что получилось:
Как видно, Иванов владеет двумя КИКами, которые, в свою очередь, владеют российскими юр. лицами.
Разберем код выше.
Импортировали модуль и указали откуда будем считывать данные на диске:
from pathlib import Path
data_dir = Path('.') / 'data'
В текущей директории считали 'example.edgelist':
G = nx.read_edgelist('example.edgelist')
*example.edgelist — это обычный текстовый файл вида:
# source target
Иванов КИК1
Иванов КИК2
КИК1 КИК2
КИК1 Ромашка_ООО
КИК2 Ведро_АО
Значения записаны кто-кем владеет с пробелом между ними.
Далее определили как будет выглядеть сеть:
pos = nx.spectral_layout(G)
Если поменять на pos = nx.spring_layout(G), то она примет вид:
И это расположение, как ни странно, наиболее подходящее для более масштабных структур.
Наконец, нарисовали сеть, обозначив отступы:
nx.draw_networkx(G, pos)
plt.gca().margins(0.15, 0.15)
Сохранить картинку просто:
plt.savefig('plot.png')
Как нарисовать сегмент в networkx
#подграфик
H = G.subgraph(['Иванов', 'КИК1', 'Ромашка_ООО'])
plt.subplot(212)
print("Подграфик:")
nx.draw_networkx(H)
Здесь мы отступы не сделали, и названия «уехали»:
Networkx оперирует понятиями нод(nodes) и связей(edges) между ними. В нашей ситуации ноды — это Иванов, КИК1, КИК2, Ромашка_ООО, Ведро_АО. А связи — то, что находится в файле example.edgelist.
Посмотреть и то и другое можно просто, обратившись к методам G.nodes и G.edges:
Направленный график в networkx (Directed edge list)
Проясним немного построенную сеть, добавим стрелочки:
# Read edge list
G = nx.read_edgelist(
str('example.edgelist'),
create_using=nx.DiGraph)
pos = nx.spectral_layout(G)
# Draw network
nx.draw_networkx(G, pos, arrowsize=20)
plt.gca().margins(0.15, 0.15)
Небольшие изменения позволили нарисовать более внятную картину кто кем владеет:
В коде, как можно заметить, изменения минимальны.
Следующий этап — построение графика, где будут видны размеры пакетов владения.
Для этого надо познакомиться с понятием веса (weight) это третий основной параметр, с которым может работать networkx. Чтобы его включить в работу, в текстовый файл надо добавить эти самые веса, например так:
# source target
Иванов КИК1 100
Иванов КИК2 100
КИК1 КИК2 50
КИК1 Ромашка_ООО 100
КИК2 Ведро_АО 100
Теперь заново построим сеть, используя уже веса и обозначим их на графике:
# Read edge list
G = nx.read_weighted_edgelist(
str('example2.edgelist'))
# Extract weights
weights = [d['weight'] for s, t, d in G.edges(data=True)]
nx.draw_networkx(G,pos)
labels = nx.get_edge_attributes(G,'weight')
nx.draw_networkx_edge_labels(G,pos,edge_labels=labels)
plt.gca().margins(0.15, 0.15)
*example2.edgelist — это файл, который сформирован выше с весами.
Получим вот такую картину:
Кто кем и как владеет, networkx
Теперь нам как юристам-программистам, надо понять, в какой последовательности и в каком размере владеет Иванов, например компанией Ведро_АО и владеет ли вообще. Это требуется, чтобы определить в разветвленном холдинге факт владения и все цепочки до целевой ООО (АО), чтобы потом эти цепочки прописать в уведомление по КИК.
С помощью networkx сделать это можно следующим образом:
list(nx.all_simple_paths(G,'Иванов', 'Ведро_АО'))
В качестве первого аргумента идет нода-владелец, вторым — нода, до которой мы будем строить пути.
Используя данный метод можно увидеть, что Ведром_АО Иванов владеет по следующим цепочкам:
[['Иванов', 'КИК1', 'КИК2', 'Ведро_АО'], ['Иванов', 'КИК2', 'Ведро_АО']]
Графически это подтверждается.
Узнать долю владения можно перемножив веса между соответствующими нодами: 1*0,5*1=0,5, 1*1=1. Доля более 25%, уведомление необходимо подавать.
В коде перемножение делается следующими костылями (более изящный метод пока не найден):
x=0
b=0
c=[]
for i in list(nx.all_simple_paths(G,'Иванов', 'Ведро_АО')):
for a in i:
if x>len(i)-2:
pass
else:
b=int(nx.bidirectional_dijkstra(G, i[x],i[x+1])[0])#доля владения
x+=1
c.append(b/100)
print(c)
import numpy as np
print(np.prod(c))
x=0
b=0
c=[]
for i in list(nx.all_shortest_paths(G,'Иванов', 'Ведро_АО')):
for a in i:
if x>len(i)-2:
pass
else:
b=int(nx.bidirectional_dijkstra(G, i[x],i[x+1])[0])#доля владения
x+=1
c.append(b/100)
print(c)
import numpy as np
print(np.prod(c))
В первом случае выведет долю 0,5, во втором 1.
Какие еще есть доступные варианты визуализации? Например, Netwulf.
Netwulf
Документация находится здесь.
Сама сеть интерактивна, в этом ее основной плюс. После установки python пакета, построим сеть:
import netwulf as nw
plt.figure(figsize=(200,200))
G = nx.read_weighted_edgelist(str('example2.edgelist'),create_using=nx.DiGraph)
pos = nx.spring_layout(G)
nw.visualize(G)
После запуска кода, jupyter подвисает, а в дополнительно открывшемся окне браузера виден результат:
Справа на панели видны опции, изменение которых влияет в режиме онлайн на построенную сеть.
Минус данного пакета — пока нельзя отобразить веса и стрелки между нодами, но авторы обещали это доработать.
*чтобы вернуться в jupyter понадобится нажать на опцию «post to python»:
Еще один неплохой вариант подобной визуализации для python — молодой проект webweb.
Webweb
Документация здесь.
Строится сеть схожим образом:
from webweb import Web
web = Web(title='kitchen_sink')
web.display.networkName = 'tree'
web.display.networkLayer = 2
web.display.colorBy = 'ring'
web.display.sizeBy = 'degree'
web.display.gravity = .3
web.display.charge = 30
web.display.linkLength = 15
web.display.colorPalette = 'Greens'
web.display.scaleLinkOpacity = False
web.display.scaleLinkWidth = True
from pathlib import Path
data_dir = Path('.') / 'data'
# Read edge list
G = nx.read_edgelist('example.edgelist',create_using=nx.DiGraph)
plt.figure(figsize=(200,200))
# Draw network
pos = nx.spring_layout(G)
Web(list(G.edges)).show()
Из явных преимуществ перед netwulf: возможность выделения цветом ключевых нод, текстовый поиск нод с подсветкой на сети:
Резюмируя, можно сказать, что развивающиеся потомки networkx — netwulf и webweb хороши для построения быстрой картинки структуры небольшого холдинга. У обоих модулей есть режим freeze, чтобы заморозить ноды, которые слипаются в одну кучу в силу интерактивности графика. Однако даже используя их непросто работать с масштабными структурами, где количество нод больше 200.
«Подножка» от Минфина, перекрестное и кольцевое владение
Все было бы совсем хорошо при построении подобных структур, если бы не одно но, которое портит всю картину. Это но заключается в том, что в холдингах общества владеют сами собой через другие юр. лица и это называется либо перекрестное либо кольцевое владение.
На картинках в письмах от Минфина (например от 02.07.2013 ОА-4-13/11912) это выглядит так.
Перекрестное владение:
Кольцевое:
Посмотрим, как определит связи networkx для схемы перекрестного владения участия D в B.
Создадим edgelist со связями:
# source target
D B 45
B A 40
A B 55
E A 60
Построив сеть с весами, можно увидеть, что обратная связь между A и B не отражена:
Ее можно увидеть, если построить сеть без весов, со стрелками:
Что с расчетами? Какова совокупная доля D в B?
Тут кажется все прозрачно, 45%
И networkx выдает при команде list(nx.all_simple_paths(G,'D', 'B')):
[['D', 'B']]
Но не все так просто.
Минфин говорит, совокупная доля D в B определяется по формуле:
И составит 57,69%.
Что делать? networkx бессильна?
Вовсе нет, networkx позволит выявить подобные ситуации, но вот формула расчета будет другой, согласно «букве Закона».
Частично проблему можно снять, добавив в edgelist записи
A A
B B
Далее командой list(nx.nodes_with_selfloops(G)) можно посмотреть ноды с участием в самих себе, но при определении путей из D в B это все равно не учитывается.
jupyter тетрадка скачать — здесь.
le1ic
По-моему небольшая ошибка с целевой аудиторией статьи )))
zoldaten Автор
time will show when i don't know