Если поискать в интернете схемы подключения оптронов, то можно обнаружить, что в подавляющем большинстве случаев предлагается просто добавить резистор. Это самая простая схема, она же и самая медленная. Когда скорость реакции не устраивает, предлагается ставить более быстрый оптрон, но, во-первых, быстрые оптроны - это дорого, и во-вторых, почему бы не разогнать быстрый оптрон до ещё большей скорости?
Итак, в чём основная проблема передачи сигнала через оптопару? Обычно в оптопаре на выходе стоит биполярный транзистор, а все биполярные транзисторы страдают такой проблемой как ёмкость переходов. Основную проблему создаёт ёмкость между коллектором и базой, во время переходных процессов именно она мешает транзистору быстро открываться и закрываться. Это явление называется эффект Миллера. Ещё во времена ламповых приёмников придумали, как с ним бороться. Основная идея в том, чтобы напряжение между базой и коллектором не менялось, в таком случае не придётся тратить время на перезарядку паразитной ёмкости.
Для примера давайте сравним, как ведёт себя оптрон при обычном включении и при включении с постоянным напряжением. В первом случае ёмкость заряжается так медленно, что выходной сигнал болтается где-то возле середины.
А теперь модельное включение, которое должно показать предельно достижимое время реакции.
Такой сигнал (красный график) выглядит намного приятнее, фронты уменьшились до 0.1 мкс. В исходном они были где-то 2-3 мкс, то есть ускорение примерно в 20-30 раз. Теперь возникает вопрос, как этим воспользоваться на практике, снять сигнал с оптрона, не меняя напряжения. И первый способ - это каскодное включение (зелёный график).
Уже неплохо, со 100 кБит/с разогнались до 1 Мбит/с, но всё ещё не идеально. Если добавить ещё один резистор, то можно построить дифференциальный усилитель.
Немного Титце и Шенка, и пожалуйста, графики практически совпали, 3 мкс превратились в 100 нс.
Ура, всё работает, расходимся? Нет, нужно больше золота, так что переходим ко второй части. Сейчас мы боролись с выходной ёмкостью, но есть ещё входная ёмкость, и для неё так же существуют стандартные схемотехнические методы. Почему бы, например, не включить на вход конденсатор, чтобы он быстрее заряжал ёмкость светодиода.
Как видите, для нарастающего фронта это оказалось серебряной пулей. Теперь надо разогнать спадающий фронт, и здесь возникает проблема. У нас ведь однополярное питание, а для разряда светодиода нужно отрицательное напряжение. Поэтому следующим шагом будет схема со сдвигом уровня (не знаю, есть ли тут общепринятое название). Ставим на выходе компаратор, который сравнивает ток через оптрон. Его можно собрать из пары токовых зеркал, подобный входной каскад повсеместно ставится в ОУ и компараторах.
Пары транзисторов продаются в одном корпусе, так что должно получиться довольно компактно. Вторая серебряная пуля готова, однако можно заметить, что спадающий фронт немного отстаёт. И наконец мы пришли к золоту: вместо самодельного компаратора ставим промышленный. Вот они, фронты 10 нс.
Можно поднять входную частоту до 100 МГц и посмотреть, что там в итоге получилось.
В принципе неплохо, можно в продакшен, правда здесь возникает другая проблема - такие компараторы дорогие.
P.S.: в последней схеме с трудом подобрал номиналы, так что не надейтесь, что она у вас заработает на заявленной частоте.
Схемы моделировались в LTspice.
Leoncillo
Кстати! Как раз стоит задача измерения напряжения на высокой стороне и организация обратной связи… Такое решение будет приемлемым: сделаю на полевиках простейший преобразователь, а управлять из решающего устройства. Спасибо!