Автор: Александр Старостин
Продолжаем знакомиться с работой учёных в Зоне отчуждения. На сей раз затронем тяжёлые девяностые годы и несколько менее тяжёлые нулевые. Сразу скажу, что наука десятых годов не затронута совсем, так как мне не удалось найти материалов на эту тему. Если вы чем-то располагаете - делитесь в комментариях, обязательно сделаю статью про это.
В это части будет побольше науки. В частности - научных методов сбора и обработки данных об Объекте и Зоне. Люди отошли от шока произошедшего и принялись отвоёвывать территорию.
А для сюжетного равновесия будет правдивая история про хищных лошадей, охотящихся на волков.
Развал СССР в 1991 году создал достаточно сложную ситуацию. ЧАЭС вместе с ЧЗО находилась на Украине и переходила под её юрисдикцию, а ИАЭ им. Курчатова (во всё том же 1991 году преобразованный в Национальный исследовательский центр «Курчатовский институт», далее НИЦ) попадал под российскую юрисдикцию. В результате получалось, что сотрудники НИЦ работать в зоне так просто уже не могли, другое государство как-никак. Переговоры велись между непосредственно Курчатовским институтом и Национальной академией наук Украины (НАНУ). Со стороны Украины было выдвинуто предложение о создании в Чернобыле научного центра, в который бы командировались работники КИ, дабы изучать безопасность Саркофага. В результате 4 февраля 1992 года вышло постановление Кабмина Украины о создании на базе Комплексной экспедиции, Института ядерных исследований НАНУ и Всесоюзного научно-исследовательского и проектного института энергетической технологии (ВНИПИЭТ, им принадлежала разработка реакторного отделения первой очереди ЧАЭС) Межотраслевого научно-технического центра (МНТЦ) «Укрытие» при НАНУ. МНТЦ должен был заниматься научными и проектными работами по преобразованию «Укрытия» в экологически безопасную систему, а также научно-исследовательскими работами в Зоне. При этом в составе МНТЦ выделялось Отделение ядерной и радиационной безопасности (ОЯРБ), которым руководили представители Курчатовского института. В свою очередь в составе КИ был организован Отдел методов и технологий ядерных исследований (ОМТРИ, в 2007 преобразован в Лабораторию проблем Чернобыля (ЛПЧ)). Сотрудники ОМТРИ командировались в Зону для работы в МНТЦ.
Новообразованные организации получили массу задач различной сложности и профиля, от мониторинга состояния ТСМ до создания «Укрытия 2».
Мониторинг
Первая группа задач – наблюдение за уже изучавшимися явлениями и процессами под крышей саркофага. По сути, это продолжение задач КЭ, только на несколько ином уровне. Таковых явлений немало, и все они так или иначе связаны с радиоактивными материалами, находящимися внутри саркофага.
В наблюдении за состоянием ТСМ ключевую роль играла система Финиш. Даже после преобразования КЭ в МНТЦ она продолжила расширяться и совершенствоваться. К середине 90-х количество рабочих каналов дошло до почти 60, а ещё порядка 30 были в резерве. Половина рабочих каналов контролировала температуру, остальные собирали данные о МЭД, тепловых и нейтронных потоках. При этом различные типы каналов находились в разных помещениях. В 1998 году из системы Финиш выделили 21 канал, которым дали наименование «Система Финиш-Р» (Р - регламентная), она была передана «Государственному специализированному предприятию Чернобыльская АЭС».
Какие же данные дали Финиш и Финиш-Р? Согласно им, несмотря на различные воздействия, топливосодержащие материалы вели себя в основном спокойно и предсказуемо. Постепенно все регистрируемые параметры медленно спадали, что означало снижение общей опасности.
ТСМ, как уже сказано, так или иначе взаимодействовали с окружающей средой. И основным действующим реагентом была, да и остаётся вода. Вода вообще заметно мешает Укрытию: она подтачивает и без того слабые конструкции Саркофага, разрушает ТСМ и способствует их переносу по территории бывшего четвёртого блока, да и за его пределы, вода нарушает работу диагностических систем. Но в то же время, проходя через многие недоступные человеку области, она собирает информацию о состоянии находящихся там ТСМ, позволяя судить о ходе процессов их разрушения. Следствием этих причин стало увеличение внимания, уделяемого исследованиям воды.
Привожу схемы расположения контрольных датчиков Финиша и ряда смежных систем по контролю за ТСМ на всех основных уровнях энергоблока:
Основной задачей этих работ было изучение путей поступления и миграции жидкости внутри объекта, а также динамики и уровней водных скоплений. Проводились они по-разному. Собирались образцы воды и донных отложений для анализов, в воду добавляли специальные вещества-индикаторы, дабы можно было обнаружить, в какое скопление какой поток течёт.
Было выяснено, что большая часть воды попадает в Саркофаг в основном из-за атмосферных осадков (до 1800 кубометров в год на 2010 год) и конденсации влаги в условиях постоянного уменьшения тепловыделения ТСМ (до 500 кубометров в год на 2010 год). Ещё один крупный источник – это вода от растворов пылеподавления (от 200 до 400 кубометров в год на 2010 год). Кроме того, обнаружились скопления воды на нижних отметках. Самое большое – в помещении 001/3, находящемся прямо под каскадной стеной. В среднем там порядка трёхсот кубометров воды плюс ещё сто кубометров донных отложений. Формируется оно из низко- и среднеактивной воды, поступающей со стороны каскадной стены, бассейна-барботёра и других помещений блока. Концентрация плутония в нём постоянно растёт, урана – волнообразно изменяется. Но реально опасных абсолютных значений концентрации уран не достигает. Так что сейчас вода всё же не представляет критических проблем с точки зрения ядерной и радиационной безопасности. В то же самое время существуют условия для миграции грунтовых вод как в блок, так и из блока.
При работе с грунтовыми водами выяснилось, что всё-таки радиоактивные материалы из Укрытия в них попадают. Вместе с тем, такого серьёзного вреда они не несут
В помещении 001/3 были обнаружены обширные залежи заражённой воды, которая собирается здесь с обширной части блока
Но не меньше внимания требовалось и воздуху. Саркофаг содержит огромное количество радиоактивный пыли и аэрозолей, а будучи негерметичным, постоянно выпускал все это из себя. Выбросы бывают организованные через знаменитую вентиляционную трубу ВТ-2 (до 2013 года, когда её разобрали) и неорганизованные.
Первые замерялись с помощью измерений объёмной активности газоаэрозольного выброса и дальнейшего расчёта его суммарной активности. А вот со вторыми всё интереснее. Система их мониторинга была создана ещё в 1990 году, а с 1992 года мониторинг осуществлялся работниками ОЯРБ. Для начала определили вероятные пути выноса аэрозолей. Ими оказались люки 7, 10, 13, 15 на кровле Укрытия. На этих люках установили планшетодержатели, каждый из которых укомплектован двумя вертикальными и двумя горизонтальными планшетами. Планшеты представляли собой листы марлевой ткани, обработанные специальным составом – смесью нефтяных масел. Этот состав позволяет улавливать большое количество аэрозолей, резко уменьшая количество выбросов. При этом реально собирает аэрозоли и пыль только нижний горизонтальный планшет. Отделённый от него металлом верхний горизонтальный планшет и оба вертикальных нужны для оценки общей загрязнённости – фона – воздуха аэрозолями в районе установки планшетов. При этом планшеты улавливают далеко не всё, а общая площадь щелей в Укрытии известна лишь с точностью до 30%, поэтому метод позволяет оценить лишь верхние оценки выброса при самых консервативных предположениях.
И всё же некоторые выводы можно сделать. Во-первых, данные системы мониторинга верно отразили динамику выброса радиоактивных аэрозолей. Во-вторых, масштабы выброса зависят от целого ряда техногенных и природных факторов – осадков и метеоусловий на промплощадке, разностью температур внутри и снаружи Укрытия, характером и интенсивностью работ на объекте и др. В-третьих, стало понятно, что эти факторы хоть и маскируют зависимость выбросов от состояния ТСМ, однако при серьёзном изменении их состояния это бы обнаружили.
За год до начала измерения выброса аэрозолей на объекте была смонтирована система пылеподавления над развалом в центральном зале. 14 форсунок периодически распыляли специальные составы, схожие с применявшимися при дезактивации территории ЧАЭС. Они как бы склеивали пыль, не давая ей подниматься и уходить из блока. При этом состав этот также являлся ещё и поддерживал ТСМ в подкритичном состоянии с помощью содержавшихся в нём поглотителей нейтронов.
Быстро стало ясно, что система хоть и весьма эффективна (концентрация аэрозолей вокруг укрытия резко снизилась после начала её использования), но всё же недостаточно совершенна. Дело в том, что эффективная площадь нанесения составов составляла лишь треть от общей площади развала, а сами составы следовало оптимизировать. Но лишь в середине двухтысячных систему пылеподавления силами КИ и Института проблем безопасности АЭС смогли модернизировать.
Исследовали и воздух на промплощадке. Для этого установили несколько аспирационных установок. Они были оснащены фильтрами, которые менялись раз в 10-17 суток и прокачивали через себя 120-250 тыс. кубометров воздуха, после чего отвозились в Чернобыль, где производился их анализ. Результаты исследований, проведённых с помощью АУ, показали, что основным фактором загрязнения является интенсивность выброса аэрозолей из Саркофага, однако другие природные и техногенные факторы, в частности погода, также имеют своё влияние на загрязнение. Система АУ зафиксировала бы резкие изменения состояния ТСМ через увеличившуюся интенсивность выбросов. При этом, несмотря на уверенное спадание загрязнённости воздуха, были отмечены скачки в период с 1997 по 2000 года, а также в 2008 на юге площадки, где была установлена одна из АУ (две другие – на севере и северо-западе). Связаны они были с интенсивными работами.
Однако пыль могла выйти из блока и другим, куда более опасным путём. Походы внутрь Саркофага доказали и без того понятную истину – он чрезвычайно ненадёжен. Очень высок риск обрушения отдельных конструкций как по причинам техногенным (усталость металла, постепенное разрушение базовых элементов из-за не всегда удачных их конструкций), так и по причинам природным (например, землетрясение или смерч). Одно землетрясение (30 и 31 мая 1990 года) станция пережила, при этом несколько бетонных блоков внутри Укрытия рухнули, не создав, к счастью, серьёзных проблем. Однако это землетрясение было слабым, четырёхбалльным. При пятибалльном устойчивость конструкций гарантировать было нельзя. Если бы какие-то важные элементы рухнули, то это могло бы вызвать подъём огромного количества радиоактивной пыли из накрытых помещений. Особенно опасными были верхние балки, могущие упасть прямо на развал реактора. Количества выброшенной пыли и степень загрязнения этой пыли позволяли считать, что в случае серьёзной аварии на объекте присутствовавшие в зоне выброса люди могли получить огромные дозы радиации.
Для более точного понимания масштабов опасности необходимо было изучить свойства пыли, находящейся на развале и верхних отметках здания. Сделать это можно было лишь с помощью очередных походов в зоны с высокими радиационными полями. Для этого требовалась длительная подготовка и разработка специальных программ исследований. Исследования проводились в 1997-1998 годах сотрудниками МНТЦ и делились на три этапа. Первый этап – сбор образцов. Всего их на верхних отметках собрали 88, 38 из которых – с развала. Также изучили и интенсивность пылеподъёма на поверхности развала с помощью адсорбирующих планшетов. Следующий шаг – изучение и анализы образцов. Результаты и расчеты позволили описать способность пыли к подъёму при падении различных грузов с различных высот. Третий этап подразумевал проведение сложнейших расчётов. Дело в том, что реальные верхние конструкции в случае обрушения падали бы на поверхность очень сложной формы. Результаты были опубликованы в 2000 году. Согласно им, с учётом площади, способной к пылегенерации, общий запас пыли может составлять до 5 тонн, однако подниматься её будет скорее всего меньше. Во многом это заслуга системы пылеподавления.
В том же 1997 году начались и работы по оценке количества топлива, находящемся в подаппаратном помещении 305/2. Для этого помещение поделили на «квартиры» - участки с площадью сечения 2х2 метра и высотой, определяемой конфигурацией потолка в данной конкретной «квартире». На каждом участке вычислялся объём только ТСМ, причём содержание в них урана оценивалось согласно предыдущим исследованиям. Если же данных для данной «квартиры» не было, то считалось, что ТСМ там нет. В результате принято считать, что общая масса ТСМ в этом помещении по самым осторожным оценкам составляет порядка 60 тонн.
Второй промежуточный итог
Все эти исследования требовали обобщения с помощью некоего нового документа, который бы пришёл на смену ТОЯБ. Кроме того, новый документ бы позволил наконец приступить уже к нормальной эксплуатации объекта «Укрытие» и начать выработку стратегии преобразования его в безопасный объект. И объединёнными усилиями Курчатовского института, Института проблем безопасного развития атомной энергетики (ИБРАЭ РАН), МНТЦ и ЧАЭС такой документ в 1996 году появился.
Назывался он длинно: «Анализ текущей безопасности объекта «Укрытие» и прогнозные оценки развития ситуации». Чаще всего в литературе это сокращают до одного слова – «Анализ…». Название прямо говорит о целях и задачах документа. Для его подготовки исследовали огромное количество строительной документации, результатов исследований, проводившихся с 1986 по 1995 годы.
Исходной идеей «Анализа…» являлась гипотеза о том, что Саркофаг всё ещё опасен, причём степень опасности гораздо выше, чем допускается любыми требованиями к объектам, содержащим радиоактивные и делящиеся материалы. Первая часть документа содержала описание его основных особенностей – отсутствие по понятным причинам разработанной до или во время строительства документации по обоснованию безопасности, неполные исследованность и контролируемость Укрытия, его местоположение рядом с другими (на тот момент ещё работавшими) блоками ЧАЭС.
Однако первичной задачей был анализ безопасности. Проблема состояла в том, что ТАКОЙ радиационной катастрофы с ТАКИМИ последствиями человечество ещё не испытывало, а потому методики такого анализа попросту не могло существовать. И она была разработана и описана в документе. Состояла методика в сочетании расчётов с оценками, что позволяло прогнозировать возможные аварии, их сценарии и последствия, уточнить события апреля-мая 1986 года. К каким же выводам привела учёных эта методика?
Результаты исследований ЛТСМ в помещении 305/2 показали, что в некоторых образцах лавы содержатся непереплавленные фрагменты активной зоны, больше того, зарегистрированы были даже отдельные фрагменты топлива, которые соприкасались с лавой. Сама же лава растрескивалась и становилась водопроницаемой. При этом исчез ещё один барьер на пути соприкосновения лавы с водой – высокая температура расплава, следствием чего и стало её растрескивание. Таким образом, появлялся ещё один элемент, который требовалось учитывать при оценке ядерной безопасности объекта – композиция «лава + вода + фрагменты топлива», причём опасность этой композиции выше, чем опасность композиции «лава + вода». Соответственно, вероятность возникновения самоподдерживающейся цепной реакции существовала и была больше допустимой. Неблагоприятные прогнозы, описанные в ТОЯБ, сбылись. Другой вопрос, что даже если бы реакция в ТСМ и возникла, то опасна она была бы только для персонала объекта.
Дальше в «Анализе…» были рассмотрены возможные аварии на объекте, их риски и меры противодействия, причём было показано, что наиболее опасной будет именно выброс пыли в результате обрушения конструкций «Укрытия». Рассмотрели и мероприятия, направленные на обеспечение долговременной безопасности объекта, а также его преобразования во что-то более безопасное.
На основании «Анализа…» в 1997 году была выдана «Лицензия № 07/5-Б-0397-32 на эксплуатацию объекта «Укрытие» – 4-го блока Чернобыльской АЭС».
Однако версия 1996 года не стала финальной. Уже в 1998 году в ходе работы над английским вариантом «Анализ…» дополнили результатами исследований 1996-1997 годов. А в 2001 году на свет появилась версия 2.0. В период между 1996 и 2001 годами было проведено множество исследований, которые расширили представление о состоянии и внутренних процессах Саркофага. Кроме того, начинались работы по укреплению стен Укрытия. Поэтому потребовалось обновление оценки безопасности.
Новый «Анализ…» в целом подтвердил и уточнил выводы прошлого. Однако, поскольку в новую версию включались более поздние исследования, оценка безопасности оказалась более точной. Были гораздо более подробно освещены исследования возможных обрушений (в варианте 1996 года рассматривался только «коллапс» - падение балок Б1 и Б2 и следующее за ним обрушение всей крыши), включавшие в себя не только изучения самих возможных обрушений, но и аэродинамические модели распространения пыли и опасности, которой в этих случаях были бы подвержены люди. Также были рассмотрена и ядерная безопасность Укрытия. Были уточнены оценки количества топлива внутри. Согласно новым оценкам, от 125 («минималистичная» оценка – все сомнения трактуются в пользу того, что в сомнительных точках топлива нет) до 150 (наиболее реалистичная оценка) тонн находятся внутри Саркофага, ещё порядка 0.75 тонны топлива находится на площадке АЭС под слоями песка, бетона, гравия и бетона. При этом существуют белые пятна, сведения о количестве топлива отсутствуют и вряд ли появятся в обозримом будущем. Эти белые пятна (порядка 35 тонн) – помещения 305/2 (внутри больших скоплений бетона, ТСМ и прочих обломков) и 307/2, центральный зал (под сброшенными с вертолётов материалами), под каскадной стеной (туда сгребали обломки, лежавшие на площадке).
Все эти данные сводятся к главному выводу, который с 1996 года не изменился – Укрытие всё ещё является чрезвычайно опасным объектом.
Основные работы в нулевых
Помимо ввода в действие модернизированной системы пылеподавления, проводился целый ряд научных работ высокой важности.
База данных «Состояние топливосодержащих материалов и радиоактивных веществ объекта «Укрытие» Чернобыльской АЭС» была разработана в период между 1998 и 2001 годами конгломератом научных учреждений нескольких стран. Помимо МНТЦ и КИ в её создании также приняли участие французский Институт ядерной безопасности и защиты (Institut de radioprotection et de surete nucleaire - IPSN) и немецкое Общество безопасности реакторов и установок (Gesellschaft fur Anlagen- und Reaktorsicherheit - GRS). При этом задействовалось множество архивов, как учреждений уровня РАН, так и отдельных людей. Всего было рассмотрено 600 источников, из которых в работу пошла сотня. Центральной структурой стало скопление ТСМ. Всего таких скоплений рассмотрено 97, данных по общим свойствам этих ТСМ – 965, а количество данных по элементарному и радионуклидному составу проб – 5918. Одним словом, это обширная база, которая впоследствии ещё будет пополняться.
Такие пемзообразные пятна образовывались на лаве в помещениях с высокой влажностью
Примерно в тот же период появился ряд работ на тему лавинообразного разрушения топливных лав и превращения их в пыль. Помимо общей радиационной опасности этого явления в виде риска выброса этой пыли за пределы существующего Саркофага, проблема распространялась и на Укрытие-2, которое тогда только проектировали. Оно просто не было рассчитано на столь огромное количество пыли. В результате пришлось провести целый ряд работ на протяжении 2003-2010 годов. Велись они Курчатовским институтом и Институтом проблем безопасности АЭС. Общие выводы таковы: разрушение лав идёт, основным воздействующим агентом является вода. Однако скорость разрушения очень мала и даже замедлится после надвижения Укрытия-2, так как поступление воды в Саркофаг значительно уменьшится.
Ещё одна сверхважная работа – это модель образования и растекания лав в дни аварии. Выполнили работу совместно КИ и ИБРАЭ РАН. Она преследовала множество целей:
помочь уточнить количество, расположение и свойства лавы в недоступных помещениях;
выработать рекомендации по предотвращению возможных аварий;
способствовать созданию оптимальных технологий извлечения лавы и тем самым снизить материальные и дозовые затраты.
Еще одна цель состояла в том, чтобы использовать результаты огромного по своим масштабам и практически неповторимого «эксперимента», поставленного над ядерным топливом 4-го блока, для решения общих проблем безопасности атомной энергетики, связанных с образованием кориума.
А.Боровой, Е.Велихов. Работы Курчатовского института по ликвидации последствий аварии
Для осуществления этой работы необходимо было верифицировать и обработать огромное множество материалов, собранных и созданных с 1986 по 2005 года. Именно в 2005 закончился сбор информации. Вскоре была опубликована работа, в которой рассматривался состав лав, а также количество материалов, которые в неё вошли.
Модель учитывала множество параметров, в том числе состав ЛТСМ, тепловые характеристики лавовых масс, а также особо внимательно рассматривала взаимодействие лавы со стальными конструкциями. Было выяснено, что основной источник тепла, приведший к появлению лавы – остаточное тепловыделение топлива. Горение графита и пароциркониевая реакция были, что называется, «на подхвате». Кроме того, модель позволила определить примерное соотношение материалов, входящих в состав лав.
Не АЭС единой
Авария на ЧАЭС немедленно потребовала научного вмешательства и сопровождения практически всех действий учёными. Однако концентрировалась наука не только на станции, хотя первое время главной задачей была первичная оценка масштабов катастрофы. Тем не менее, уже в 1986 году начались работы, которые касались не только и не столько АЭС, сколько природы.
Осознавая размеры зоны, степень и неравномерность её загрязнения, учёные быстро пришли к выводу, что перед ними непревзойдённый естественный полигон, на котором можно испытать огромное количество различных наработок в различных сферах физики, химии, биологии. Быстро начали появляться экспериментальные полигоны, преследовавшие определённые задачи.
Самым, пожалуй, интересным является полигон в Рыжем лесу. Там выделили гектар леса, который не слишком сильно пострадал от выброса, и огородили полутораметровым забором, причём полметра – под землёй, дабы кроме птиц и насекомых туда никто не мог проникнуть. Задача была такова. Нужно было отследить восстановление природы в условиях сильного радиационного заражения. Тем не менее, на полигоне проживала популяция полевых мышей, которую биологи изучали особенно тщательно на предмет различных патологий.
В 1992 году из-за сухого лета Зону захлестнули лесные пожары. Представители ОЯРБ тогда отметили, что привлечённые к тушению пожарные и персонал не пользуются средствами предохранения от радиоактивных аэрозолей. Учёные решили сообщить об этом руководству Зоны, предъявив заодно исследование того, как, какой и сколько грязи выносится с пожаром в воздух. 29 июля учёные отправились к деревне Буряковка, рядом с которой бушевал очередной пожар. Забравшись внутрь бушевавшего пожара (точнее, к моменту приезда группы горела уже только лесная подстилка), вооружившись фильтром и двумя планшетами, учёные в течение 55 минут брали пробу, после чего, оставив планшеты переместились на запад, чтобы собрать данные на отдалении, в 2 км от фронта пожара. По итогам проведённого после возвращения анализа стало ясно, что
Аэрозольные частицы дымового шлейфа содержат радионуклиды, характерные для выпадений на местности в результате аварии на ЧАЭС в 1986 г.
Основным источником радиоактивных аэрозолей является горящая лесная подстилка, а охваченные огнем деревья поставляют в воздух относительно малое количество цезия-137 и стронция-90 и лишь следы плутония и церия-144. При низовом пожаре страдает в основном верхний слой подстилки. При верховом пожаре часто происходит ее полное выгорание. Именно такие пожары представляют наибольшую радиационную опасность.
Ещё одним важным объектом стал полигон в Чистогаловке. Это село попало под самый мощный выброс, было эвакуировано и захоронено. А после этого туда пришли исследователи. Они хотели отработать агротехнические приёмы, снижающие накопление различных радионуклидов сельскохозяйственных растениях и животных. Создан он был в начале девяностых. Выращивали здесь и зерновые (ячмень, овёс), и кормовые (кукуруза, картошка и др.) культуры. Кроме того, здесь находилось небольшое экспериментальное стадо и пасека. Исследования не прошли впустую – результаты в виде чистых кормов и комплексов мероприятий по очищению почвы говорят сами за себя.
Нельзя забывать и об Отделе радиологии и рекультивации (ОРиР), работавшем в здании детского сада на севере Припяти. Сюда свозились пробы почв и растений с различных уголков зоны. ОРиР восстанавливал припятское тепличное хозяйство под свои нужды. Было доказано, что в условиях радиоактивного заражения местности для разведения овощных культур теплицы пригодны. Из ОРиР вышли также наработки по окультуриванию дезактивированных районов с целью предотвращения разноса пыли и саженцы для нового леса, который вырос на месте Рыжего.
Стародумов о сомах, специальных овощах, которые выращивались в Чернобыле:
Не отставало и животноводство. Лидировало здесь село Новошепеличи. Там было создано экспериментальное стадо на основе отловленных ещё в 1986-87 годах быка Урана и коров Альфа, Бета и Гамма. Позже туда завезли ещё 16 коров, овец и прочей живности. Так в Новошепеличах обосновалось стадо размером в 140 голов, которое стало важнейшим источником информации о возможностях добычи чистого молока и мяса на заражённых территориях.
Появилась в регионе и экспериментальная пасека. Она была создана в середине 90-х на территории ОРиР. Исследовались здесь, как нетрудно догадаться, продукты жизнедеятельности пчёл – мёд, соты, воск, пыльца. В состав пасеки также входили аналогичные объекты в Чистогаловке и Рыжем лесу и ульи самосёлов. После сокращения финансирования в начале 2000-х пасека переехала в село Залесское. Там она проработала до 2009 года, когда пала жертвой мародёров, вынесших всё – от ульев до халатов.
Лаборатория гидробиологии занималась изучением жизнедеятельности рыб, моллюсков и водорослей в пруду-охладителе. Оно размещалось на базе старого рыбхоза, который промышлял здесь до катастрофы. Удобное место – рядом огромные градирни третьей очереди ЧАЭС, сам комплекс окружён прудом и отводным каналом, что превращало его в остров. Здесь на площади в 3 гектара учёные жили и работали. Их интересы были обширны: изучалась уникальная экосистема пруда-охладителя; разводились пушные звери, которых откармливали рыбой из пруда; проводились эксперименты с моллюсками, способными очищать воду. Летом жить там можно было безвылазно – только подвози чистую еду и воду в бидонах. Тут были и электрообогреватели, и лаборатория, и даже лодочная флотилия. Учёным был создан максимум условий. В 2008 году объект законсервировали, а вскоре он и вовсе последовал за пасекой, погибнув от рук мародёров
Отдельно надо сказать о наблюдении за дикой природой. Она очень быстро показала свой нрав – 1987 год стал годом нашествия крыс и мышей-полёвок, которые откормились на брошенном в прошлом году зерне. В следующем году их количество резко уменьшилось, отпугнув хищных птиц. Вообще, авария нанесла по природе мощный удар. В связи с гибелью лесов и ряда земель произошло нарушение баланса, который вскоре восстановился. В зоне стали чаще видеть животных, которых уже и не надеялись там увидеть. Например, благородный олень, увидеть которого для работников АЭС стало хорошей приметой – если заметишь его из окна электрички Славутич-АЭС, то зарплату выдадут вовремя и в полном объёме. В конце девяностых на территории зоны появилось небольшое стадо лошадей Пржевальского из заповедника Аскания нова. Они быстро показали свой нрав, нередко помогая егерской службе регулировать поголовье расплодившихся и представляющих опасность для людей волков. Лошади в зоне обжились.
Поскольку до сих пор никто не описывал поведение лошади Пржевальского при встрече с крупными хищниками в природе, здесь целесообразно дать краткое описание таких случаев в зоне отчуждения ЧАЭС. Зимой 1999 года в 49-м квартале Корогодского лесничества очевидцы наблюдали, как табун из шести жеребцов-холостяков, завезенных из Аскании-Нова (две особи возрастом 3,5 лет, остальные — 6,5 и 7,5 лет), окружили двоих волков. Одному хищнику удалось вырваться и убежать, другого старшие жеребцы хватали зубами, подбрасывали в воздух и потом топтали передними копытами, пока от волка не остались лишь разрозненные фрагменты. При этом два молодых жеребца держались в стороне. В декабре 2002 года в 45-м квартале Корогодского лесничества… наблюдали охоту стаи из 12 волков на одинокого молодого жеребца-холостяка. Тот первый заметил волков на расстоянии примерно 1,5 км и стал приближаться к ним крупной рысью в позе тревожного любопытства. Три волка отделились от стаи и забежали сзади, остальные залегли. Как только жеребец поравнялся с невысоким холмом, на котором были волки, вся стая бросилась на него. Но жеребец ускакал, а волки не стали долго его преследовать… Летом 2003 года в 14-м квартале Корогодского лесничества наблюдатели с пожарной вышки видели, как табун лошадей Пржевальского преследовал одиночного волка несколько сотен метров с явным намерением убить.
Ясинецкая Н.И. и Жарких Т.Л.. Цитируется по книге С. Паскевича и Д. Вишневского «Чернобыль. Реальный мир»
Про людей же -- в следующей части, послезавтра.
Автор: Александр Старостин
sonor
Все статьи цикла читаются на одном дыхании, спасибо большое за ваш труд. Очень интересный материал, много новой для меня информации.