Примерно 18 лет я занимаюсь автоматизацией производств и, в частности, прогностическими системами. Авария в турбине обходится в среднем в десятки миллионов рублей и, как правило, затрагивает далеко не только турбину. Отрыв рабочих лопаток турбины может нанести прямого урона на миллиарды, а потом ещё остановить генерацию на срок поставки комплектующих.

image
Пример такой турбины для понимания масштаба. Источник.

Сейчас это решается регламентным ремонтом и обслуживанием: «раз в год останавливаем и разбираем», «раз в месяц меняем подшипник», «раз в неделю льём сюда масло». Может, некоторые операции излишни, а может, некоторые слишком редки. Но это лучше, чем ничего.

Второй уровень — это обвесить турбину датчиками и следить за их показаниями. Так можно остановить её за несколько часов или дней до предполагаемой аварии — это лучше, чем устранять последствия, но всё равно нужно же успеть к этому моменту заказать элементы под замену. И неожиданная остановка локомотива, например, вполне может означать перепланирование всего графика перевозок.

Третий уровень — это взять исторические данные, взять потоковые данные с датчиков и построить модель их изменения. Это даст точность в недели. Это уже предиктивная аналитика, которую могут позволить себе далеко не все.

К этому можно добавить ещё физическую модель взаимодействий на устройстве.

Как устроена современная предиктивная и предписательная аналитика


Итак, вам нужно на входе:
  1. Получить исторические данные с оборудования. Минимум за три месяца, лучше — за полгода–год. Там должен быть поток данных со всех датчиков, поток данных по производственным параметрам и так далее — в общем, не 40 Кб дискретных значений за полгода, а реально гигабайты. Эти данные можно скормить какой-либо матмодели (раньше использовались разные совокупности эвристик, сейчас обучают нейросети на прогнозы), чтобы понять ожидаемое будущее состояние системы на основании прошлого опыта.
  2. После обучения нейронки дать в модель на вход также текущие данные в реальном времени, чтобы она строила уже реальный прогноз. Затем при каждом регламенте реально оценивать износ элементов и состояние оборудования, чтобы понимать, правильно ли работает модель. Как правило, модель способна далеко не на всё: она может предсказывать случаи, которые уже были на этом оборудовании, достаточно точно, но редко когда удаётся предвидеть новый случай, которого не было в истории.
  3. К оборудованию строится физическая модель. Точнее, матмодель физических и химических процессов внутри узла. Например, если речь про подшипник, к «слепому» анализу исторических данных добавляется моделирование физических процессов, происходящих с ним. Эти модели в совокупности с предиктивной аналитикой из пункта 2 очень сильно повышают точность прогноза, с одной стороны, — и очень сильно повышают трудоёмкость разработки, с другой.

Проблема в том, что потоки данных с одного элемента оборудования неприменимы для другого, принципиально похожего, но другой серии. Плюс для каждого наименования оборудования нужна своя физическая модель: принципиальная подходит для всего класса оборудования, но даёт незначительный прирост точности. А вот написанная под конкретную железку уже работает.

Более того, два экземпляра одной и той же железки требуют разных физических моделей и работают совершенно по-разному. Первая причина в том, что они физически отличаются: каждый подшипник и каждая другая деталь имеют свои характеристики, укладывающиеся в вилку допусков и достаточно случайно меняющиеся в процессе эксплуатации. Замена элемента приводит к другому поведению системы. Добавьте к этому текущие ремонты, часто меняющие физическую модель, добавьте человеческий фактор по замене комплектующих на глаз точно такие же, только отличающиеся последней цифрой в номере, добавьте возможность некорректного импортозамещения — и вы получите два визуально похожих элемента оборудования, но с данными, неприменимыми друг к другу.

Поэтому нейронка учится именно на данных каждого конкретного элемента оборудования и уточняется физической моделью для данного типа (серии) устройств.

А вторая проблема в эксплуатации. Например, я знаю, что прогностические модели электровозов для российских железных дорог имеют два класса: для южных регионов и северных. То есть один и тот же электровоз будет обсчитываться совершенно в разных физических моделях в зависимости от региона эксплуатации. Знаю, звучит странно, но это реальность производств. Кстати, поэтому в поток данных нужно также добавлять все внешние условия, условия среды, производственных материалов и так далее.

Что получается


Если у вас есть крайне дорогое оборудования типа турбины за миллиард, можно писать к ней собственную модель и делать НИОКРы. Если получится уменьшить вероятность поломок, это окупится.

Если у вас есть серийное дорогое оборудование, обычно к нему либо уже есть типовая физическая модель, либо она достаточно быстро дорабатывается из класса таких физических моделей. Дальше нужно снять исторические данные, обучить нейронку и получить достаточно хороший результат.

Если у вас есть единичное оборудование со средней ценой или много серийного дешёвого оборудования, как правило, такие внедрения не окупаются без готовых физических моделей производителя под железо. У Siemens и Schneider Electric на многие изделия модели есть, например, но они их не дают, а используют у себя для анализа поступающей телеметрии и предсказания ремонтов.

На практике сейчас поменялось то, что появилась возможность существенно дешевле учить нейросети на исторических данных, и это из области искусства постепенно переходит в обыденность. По факту же каждого руководителя производства интересует три простых вещи:

  • сколько стоит внедрение;
  • какой экономический эффект оно даст;
  • какие гарантии может дать вендор.

Как и 18 лет назад, ответить на все три вопроса так, как хочется производству, не выйдет. Весь софт всегда поставляется по лицензии AS IS, то есть если ПО не предсказало выход из строя, а он случился, это просто досадная случайность, а не ответственность вендора. Финансовых гарантий вендор на себя не берёт.

Внедрение при НИОКРе очень дорогое. Экономический эффект в том, что будет меньше поломок и простоев, но его можно доказать лет так за 5–6 на практике.

Статистику никто не показывает, она очень закрытая у каждого производства.

В итоге остаются области, где уже есть экономический смысл внедрять готовые решения (с небольшой доработкой под конкретное оборудование) — и именно это мы делаем. Сейчас это тяговые электродвигатели, масляные насосы, генераторы, компрессоры и ДВС (там, как правило, треть проекта — адаптация под устройство, но она окупается) и ещё ряд электроагрегатов.

Насколько достоверны прогнозы?


Очень сильно зависит от того, что за модели были, кто внедрял (с каким опытом) и какие данные собирались. Любая аналитика строится на данных. Нет данных — нет аналитики. Я часто вижу, когда компания наверху внедряет какую-то информационную систему, которая должна агрегировать данные, а затем она спускается на места, и вместо интеграции с производственными системами все эти данные начинают вбиваться руками раз в смену. Так прогностика, конечно же, не работает.

Прогнозы часто обогащаются базами знаний экспертов (условно, это техкарты и перенос принципов отказов с одной модели сложного оборудования в другую похожую).

Дальше, надо понимать, что мы говорим про прогнозную аналитику, предсказывают вероятные результаты на основе выявленных тенденций и статистических моделей, полученных с помощью исторических данных и с использованием данных от оборудования, получаемых в реальном масштабе времени. Заказчики ждут предписывающей аналитики, которая позволяет получить оптимальное решение на основе прогнозной аналитики с использованием данных в реальном масштабе времени. То есть мы говорим «что будет», а заказчики ждут «что делать». На деле это требует интеграции с ещё большим количеством систем.

Вся суета вокруг прогноза состояния — попытка уйти от ремонтов по расписанию к ремонтам по требованию. Чем сложнее система, тем более сложная модель — больше влияющих факторов, менее достоверное предсказание. Опять же, каждый раз при внедрении нужно вернуться на 3 месяца назад и включить мониторинг, если этого не было сделано. Может быть и так: «Ну вы пока собирайте данные, через 3 месяца придём».

Стоит ли ожидать достоверных прогнозов от современных систем прогностики (предиктивной аналитики) в ближайшее время? Да. Всё идёт вперёд. Развивается математика. Оцифровка знания экспертов — большая задача, которой занимаются большие компании. Уже есть базы знаний, которые позволяют для каждого типа оборудования иметь бесценный источник знаний, не привлекая людей в каждом конкретном случае.

На текущий момент уровень развития матаппарата и вычислительной техники достаточен для простых систем вроде двигателя, насоса, компрессора. Но пока эти системы плохо работают с более сложными системами. Но это вопрос времени.

Так что, если у вас тяговые электродвигатели или масляные насосы, мы можем помочь с достаточно предсказуемым эффектом. С остальным вернёмся через пару лет. Надеюсь.

Комментарии (15)


  1. amartology
    17.03.2022 11:48

    Там должен быть поток данных со всех датчиков, поток данных по производственным параметрам и так далее — в общем, не 40 Кб дискретных значений за полгода, а реально гигабайты.
    Не логичнее ли делать предобработку в самих датчиках? Они же небось беспроводные и с большими сроками работы от батарейки, постоянно передавать данные по радио мощности не напасешься.


    1. S_A
      17.03.2022 12:00

      чем проще датчик, тем он надежнее... предобработка сегодня одна нужна, завтра другая.

      и беспроводных датчиков немного в общем числе.

      автору спасибо за статью. хорошая мысль про физмодель в параллели с сеткой. я делал несколько иначе - сопрягал физмодель с коэффициентами и дополнительными слоями, а дальше их бэкпропом и оптимизацией по найденному


    1. ToSHiC
      18.03.2022 00:47

      Для этого надо сначала обучить нейронку, а потом вытянуть из неё, что там ей с каких датчиков нужно, и в каком разрешении.

      Но через какое-то время обучат другую нейронку с другой архитектурой, и может оказаться, что ей нужны уже данные с других датчиков и в другом разрешении.

      К тому же всякие двигатели/насосы сами по себе уже требуют проводов или масляных магистралей, стационарно закреплены - есть ли смысл там возиться с радио, если можно кинуть провода?


      1. amartology
        18.03.2022 10:45

        К тому же всякие двигатели/насосы сами по себе уже требуют проводов или масляных магистралей, стационарно закреплены — есть ли смысл там возиться с радио, если можно кинуть провода?
        . Самые важные датчики часто стоят на движущихся частях, к которым крайне неудобно кидать провода.


    1. M_Mark Автор
      18.03.2022 12:07

      По возможности используются встроенные проводные датчики. Если нужны дополнительные датчики, то делается выбор в зависимости специфики оборудования, доступных вариантов передачи данных и т.д. При применении беспроводных датчиков с большими сроками работы от батареи/аккумулятора (т.е. при использовании LPWAN технологий) встраивание предобработки данных в сами датчики приведет к повышенному расходу энергии батареи для дополнительных вычислительных мощностей. При этом LPWAN технология предназначена для передачи очень небольших объемов данных при максимально минимизированном использовании радиопередатчика. Таким образом необходимо на этапе планирования и проектирования системы выбирать оптимальные варианты решения.


      1. amartology
        18.03.2022 12:12

        Встраивание предобработки данных в сами датчики приведет к повышенному расходу энергии батареи для дополнительных вычислительных мощностей.
        Обработка вполне может тратить меньше энергии, чем передача данных наружу — если мы говорим, скажем, об уменьшении потока с десятков килобит в секунду до сотен бит в секунду.


  1. bighouse
    17.03.2022 20:34

    Это всё теории... Для нашего оборудования не применимы от слова совсем. Это знает любой, кто в курсе корректировки НТД в реальном мире.

    А мат. модели контроля наработки и расчета усталости уже давно есть. И даже применялись... Но до сименса нашим конечно далеко, хотя и сименс порой лаптем щи хлебает.


  1. Alexwoodmaker
    17.03.2022 22:47

    Если речь идет о неразрушающем контроле, то зачем изобретать велосипед? Спектральный анализ на основе быстрого разложения рядов Фурье уже давно используется для контроля биения опорных подшипников вала турбины. В купе со SCADA полно решений на рынке. Фото турбины скорее напоминает гребной винт АПЛ, который никогда не показывают.


    1. amartology
      18.03.2022 10:46

      Если речь идет о неразрушающем контроле, то зачем изобретать велосипед? Спектральный анализ на основе быстрого разложения рядов Фурье уже давно используется для контроля биения опорных подшипников вала турбины.
      Нейронки эффективнее спектрального анализа, а значит экономически выгоднее, если можно их недорого внедрить.


      1. Alexwoodmaker
        18.03.2022 12:18

        Нейросеть обучают на большом наборе данных. Спектральный анализ работает мгновенно.


        1. amartology
          18.03.2022 12:22

          Обученная нейросеть тоже работает мгновенно, и делает это более эффективно, чем спектральный анализ.


    1. Kekushiftkey
      18.03.2022 14:47

      прошу прощения. спектральный анализ какого-то подшипника мгновенно? пожалуйста, объясните подробнее.

      подшипник обычно замурован, как до него добраться?

      как подготовить поверхность для такого анализа?

      на какое время нужно останавливать оборудование, чтобы сделать этот анализ?

      я бы не стал задавать эти вопросы, полагая, что ваше сообщение какой-то набор удачных слов, если бы вы не упомянули про гребной винт, а значит все-таки вы человек и говорите вещи, которые прошли мимо меня и не понимаю и поэтому задаю эти вопросы


  1. alexeng
    18.03.2022 15:02
    +1

    Нейронка хорошо, но как сказано правильно в статье без моделирования физпроцессов сложно говорить о полноценном прогнозе каких-то событий, которые не встречались в предыдущий период эксплуатации. Поэтому матмоделирование физики неизбежно, и как говорит наш технолог, нет там ничего сверхсложного. Модель ПТУ - https://www.youtube.com/watch?v=l7XhL6pBpMs



  1. petuhoff
    18.03.2022 15:17