Очень уважаю людей, которые имеют смелость заявить, что они что-то не понимают. Сам такой. То, что не понимаю, — обязательно должен изучить, осмыслить, понять. Статья "Математика на пальцах", и особенно матричная запись формул, заставили меня поделиться своим небольшим, но, кажется, немаловажным опытом работы с матрицами.

Лет эдак 20 назад довелось мне изучать высшую математику в вузе, и начинали мы с матриц (пожалуй, как и все студенты того времени). Почему-то считается, что матрицы — самая лёгкая тема в курсе высшей математики. Возможно — потому, что все действия с матрицами сводятся к знанию способов расчёта определителя и нескольких формул, построенных — опять же, на определителе. Казалось бы, всё просто. Но… Попробуйте ответить на элементарный вопрос — что такое определитель, что означает число, которое вы получаете при его расчёте? (подсказка: вариант типа «определитель — это число, которое находится по определённым правилам» не является правильным ответом, поскольку говорит о методе получения, а не о самой сути определителя). Сдаётесь? — тогда читаем дальше...

Сразу хочу сказать, что я не математик ни по образованию, ни по должности. Разве что мне интересна суть вещей, и я порой пытаюсь до них «докопаться». Так же было и с определителем: нужно было разобраться со множественной регрессией, а в этом разделе эконометрики практически всё делается через… матрицы, будь они неладны. Вот и пришлось мне самому провести небольшое исследование, поскольку ни один из знакомых математиков не дал внятного ответа на поставленный вопрос, изначально звучавший как «что такое определитель». Все утверждали, что определитель — это такое число, которое особым образом посчитано, и если оно равно нулю, то… В общем, как в любом учебнике по линейной алгебре. Спасибо, проходили.

Если какую-то идею придумал один человек, то другой человек должен быть в состоянии её понять (правда, для этого порой приходится вооружаться дополнительными знаниями). Обращение к «великому и могучему» поисковику показало, что "площадь параллелограмма равна модулю определителя матрицы, образованной векторами — сторонами параллелограмма". Говоря простым языком, если матрица — это способ записи системы уравнений, то каждое уравнение в отдельности описывает вектор. Построив из точки начала координат векторы, заданные в матрице, мы таким образом зададим в пространстве некоторую фигуру. Если наше пространство одномерное, то фигура — это отрезок; если двумерное — то фигура — параллелограмм, и так далее.

Получается, что для одномерного пространства определитель — это длина отрезка, для плоскости — площадь фигуры, для трёхмерной фигуры — её объём… дальше идут n-мерные пространства, вообразить которые нам не дано. Если объём фигуры (то есть определитель для матрицы 3*3) равен нулю, то это означает, что сама фигура не является трёхмерной (она может быть при этом двухмерной, одномерной или вообще представлять собой точку). Ранг матрицы — это истинная (максимальная) размерность пространства, для которого определитель не равен нулю.

Так, с определителем почти всё понятно: он определяет «объёмность» фигуры, образованной описанными системой уравнений векторами (хотя непонятно, почему его значение не зависит от того, имеем мы дело с исходной матрицей, или с транспонированной — возможно, транспонирование — это вид аффинного преобразования?). Теперь нужно разобраться с действиями над матрицами…

Если матрица — это система уравнений (а иначе зачем нам таблица каких-то цифр, не имеющих к реальности никакого отношения?), то мы можем с ней делать разные вещи. Например, можем сложить две строки одной и той же матрицы, или умножить строку на число (то есть каждый коэффициент строки умножаем на одно и то же число). Если у нас есть две матрицы с одинаковыми размерностями, то мы их можем сложить (главное, чтобы при этом мы не сложили бульдога с носорогом — но разве математики, разрабатывая теорию матриц, думали о таком варианте развития событий?). Интуитивно понятно, тем более что в линейной алгебре иллюстрациями подобных операций являются системы уравнений.

Однако в чём смысл умножения матриц? Как я могу умножить одну систему уравнений на другую? Какой смысл будет иметь то, что я получу в этом случае? Почему для умножения матриц неприменимо переместительное правило (то есть произведение матриц В*А не то что не равно произведению А*В, но и не всегда осуществимо)? Почему, если мы перемножим матрицу на вектор-столбец, то получим вектор-столбец, а если перемножим вектор-строку на матрицу, то получим вектор-строку?

Ну, тут уж не то что Википедия, — тут даже современные учебники по линейной алгебре бессильны дать какое-либо внятное объяснение. Поскольку изучение чего-либо по принципу «вы сначала поверьте — а поймёте потом» — не для меня, копаю в глубь веков (точнее — читаю учебники первой половины XX века) и нахожу интересную фразу…
Если совокупность обычных векторов, т.е. направленных геометрических отрезков, является трёхмерным пространством, то часть этого пространства, состоящая из векторов, параллельных некоторой плоскости, является двумерным пространством, а все векторы, параллельные некоторой прямой, образуют одномерное векторное пространство.

В книгах об этом напрямую не говорится, но получается, что векторам, параллельным некоторой плоскости, необязательно лежать на этой плоскости. То есть они могут находиться в трёхмерном пространстве где угодно, но если они параллельны именно этой плоскости, то они образуют двумерное пространство… Из приходящих мне на ум аналогий — фотография: трёхмерный мир представлен на плоскости, при этом вектору, параллельному матрице (или плёнке) фотоаппарата, будет соответствовать такой же вектор на картинке (при условии соблюдении масштаба 1:1). Отображение трёхмерного мира на плоскости «убирает» одно измерение («глубину» картинки). Если я правильно понял сложные математические концепции, перемножение двух матриц как раз и представляет собой подобное отражение одного пространства в другом. Поэтому, если отражение пространства А в пространстве В возможно, то допустимость отражения пространства В в пространстве А — не гарантируется.

Любая статья заканчивается в тот момент, когда автору надоедает её писать. Поскольку я не ставил перед собой цели объять необъятное, а исключительно хотел понять суть описанных операций над матрицами и то, как именно матрицы связаны с решаемыми мной системами уравнений, я не полез в дальнейшие дебри линейной алгебры, а вернулся к эконометрике и множественной регрессии, но сделал это уже более осознанно. Понимая, что и зачем я делаю и почему только так, а не иначе. То, что у меня получилось в этом материале, можно озаглавить как «глава о сути основных операций линейной алгебры, которую почему-то забыли напечатать в учебниках». Но ведь мы же не читаем учебников, правда? Если честно, когда я учился в университете, мне очень не хватало именно понимания затронутых здесь вопросов, поэтому я надеюсь, что, изложив этот непростой материал по возможности простыми словами, я делаю доброе дело и помогаю кому-то вникнуть в саму суть матричной алгебры, переведя операции над матрицами из раздела «камлание с бубном» в раздел «практические инструменты, применяемые осознанно».

Комментарии (61)


  1. knagaev
    20.02.2016 10:01
    +1

    Автор, поддерживаю!
    Я тоже всегда стараюсь придумать интерпретацию, чтобы мозг мог "пощупать" идею.
    Поэтому было легче с производными и интегралами — у них были хорошие геометрические и физические смыслы.
    Тут есть только одна опасность, когда модель не может покрыть всю область определения идеи, и в некоторых моментах и подстановки, и интуиция будет давать сбой.
    Об этом есть отличная книга В. Босс Интуиция и математика.
    Очень рекомендую.
    Кстати, его же серия "Лекции по математике" ставит своей целью помочь освежить и разобраться в математике тем, кто её когда-то проходил :)

    Вот предисловие

    Спасибо тебе Господи, что ты создал все нужное нетрудным, а все трудное — ненужным.
    Сковорода


    Для нормального изучения любого математического предмета необходимы, по крайней мере, 4 ингредиента:

    1. живой учитель;
    2. обыкновенный подробный учебник;
    3. рядовой задачник;
    4. учебник, освобожденный от рутины, но дающий общую картину, мотивы, связи, «что зачем».

    До четвертого пункта у системы образования руки не доходили. Конечно, подобная задача иногда ставилась и решалась, но в большинстве случаев — при параллельном исполнении функций обыкновенного учебника. Акценты из-за перегрузки менялись, и намерения со второй-третьей главы начинали дрейфовать, не достигая результата. В виртуальном пространстве так бывает. Аналог объединения гантели с теннисной ракеткой перестает решать обе задачи, хотя это не сразу бросается в глаза.

    «Лекции» ставят 4-й пункт своей главной целью. Сопутствующая идея — экономия слов и средств. Правда, на фоне деклараций о краткости и ясности изложения предполагаемое издание около 20 томов может показаться тяжеловесным, но это связано с обширностью математики, а не с перегрузкой деталями.

    Необходимо сказать, на кого рассчитана книга. Ответ «на всех» выглядит наивно, но он в какой-то мере отражает суть дела. Обозримый вид, обнаженные конструкции доказательств, — такого сорта книги удобно иметь под рукой. Не секрет, что специалисты самой высокой категории тратят массу сил и времени на освоение математических секторов, лежащих за рамками собственной специализации. Здесь же ко многим проблемам предлагается короткая дорога, позволяющая быстро освоить новые области и освежить старые. Для начинающих «короткие дороги» тем более полезны, поскольку облегчают движение любыми другими путями.

    В вопросе «на кого рассчитано» есть и другой аспект. На сильных или слабых? На средний вуз или физтех? Опять-таки выходит «на всех». Звучит странно, но речь не идет о регламентации кругозора. Простым языком, коротко и прозрачно описывается предмет. Из этого каждый извлечет свое и двинется дальше.

    Наконец, последнее. В условиях информационного наводнения инструменты вчерашнего дня перестают работать. Не потому, что изучаемые дисциплины чересчур разрослись, а потому, что новых секторов жизни стало слишком много. И в этих условиях мало кто готов уделять много времени чему-то одному. Поэтому учить всему — надо как-то иначе. «Лекции» дают пример. Плохой ли, хороший — покажет время. Но в любом случае, это продукт нового поколения. Те же «колеса», тот же «руль», та же математическая суть — но по-другому.

    Кто-то эти лекции ругает, а кто-то хвалит.
    Не считаю себя математиком (хотя в курсе было много, и сам по себе математику люблю), так что просто от себя имхо — мне понравились, хотя всё прочесть не успеваю.