
Регулировка громкости звуковой системы, фиксация положения пальца на сенсорном экране и определение появления в автомобиле человека – вот всего лишь несколько примеров использования переменных резисторов в повседневной жизни. Возможность изменять сопротивление – это возможность взаимодействовать, поэтому переменные резисторы можно найти во множестве вещей. (Всё, что необходимо знать о постоянных резисторах, описано в предыдущей статье).
Принципы одинаковы, но способов разделения напряжения существует довольно много. Рассмотрим, что лежит в основе верньеров, реостатов, мембранных потенциометров, резистивных сенсорных экранов, а также датчиков изгиба и растяжения.
Потенциометр
Потенциометры, по сути – это делители напряжения. Это метод разделения заданного напряжения на меньшие значения. Согласно схеме, у потенциометра (серый) есть три точки соединения. Средняя – переменная (обозначена стрелкой), и она контактирует с материалом резистора внутри где-то в одной из точек протяжённого резистора.



Напряжение между регулируемой точкой и одной из оставшихся (концов резистора) определяется сопротивлением между ними. Если соединены только две точки, тогда у нас получится переменный резистор, или реостат.
На фото – потенциометр с цилиндрической поворотной ручкой. Круглая пластиковая ручка громкости на вашей звуковой системе прячет один из таких потенциометров. Обратите внимание на три контакта, из которых средний соединён с переменной точкой. На фото изображён новый потенциометр. А вот статья о том, как я использовал такое устройство на усилителе, сделанном из банки из-под арахисового масла.
Как меняется сопротивление потенциометра

У потенциометров может быть линейный или логарифмический диапазон сопротивления. Линейный означает, что при повороте ручки сопротивление меняется линейно. Если повернуть её на четверть, сопротивление изменится на четверть.
Но если так будет с ручкой громкости, нашим ушам покажется, что громкость растёт слишком быстро; так происходит из-за особенностей восприятия звуков мозгом. Поэтому для ручки громкости лучше использовать потенциометр, чьё сопротивление меняется логарифмически. На графике показано, как меняется громкость при повороте ручки, как для линейного, так и для логарифмического потенциометра. Некоторые потенциометры обеспечивают лишь псевдо-логарифмический рост, и они дешевле тех, что дают настоящий логарифм. Они состоят из двух линейных частей, встречающихся на 50% поворота. Их работа также отражена на графике.
Логарифмическое поведение достигается изменением формы резистивного элемента – его ширина меняется по всей длине. Поэтому потенциометры часто делят на линейно сужающиеся и логарифмически сужающиеся.
Ещё одна разновидность потенциометра – подстроечное сопротивление, или триммер. Они меньше размером, и используются на электронных платах. Подстраиваются одни обычно один раз, или очень редко – только для калибровки схемы.

Триммеры

Эквалайзер
Не все потенциометры работают с вращением. Они могут быть сделаны и в форме ползунов, как на фото с эквалайзером. Такие ползуны подвержены попаданию грязи, нарушающей их работу – именно такая проблема появилась у клавиатуры на фото (это моя клавиатура, и её ползуны действительно трудно передвигать).
Реостат
Как я уже упомянул, при подсоединении только двух контактов потенциометр часто называют реостатом. Реостаты обычно используются для больших токов, и, конечно же, не только для регулировки громкости.
Чтобы работать с большими токами, они обычно делаются при помощи провода, намотанного на изолированный сердечник, по которому ходит скользящий контакт. Вспомним символ потенциометра, у которого использовано три контакта. Поскольку здесь мы подключаем два контакта, мы используем другой символ; сопротивление со стрелочкой (не подсоединённой) поперёк. На изображении ниже вы можете видеть два варианта этого символа – по стандартам IEEE и IEC.


Мембранный потенциометр
Мембранный потенциометр состоит из гибкой диэлектрической, часто прозрачной мембраны с присоединённой снизу полоской сопротивления.

Ниже её находится основание, на поверхности которого нанесена токопроводящая дорожка. Когда палец, или другой объект прикасается к мембране, полоска устанавливает контакт с дорожкой. В результате на контактах полоски появляется напряжение. Оно зависит от того, в каком месте полоска соприкоснулась с дорожкой. Схема тут та же, что и самая первая схема на странице для потенциометра.
Сопротивление мембранного потенциометра SoftPot с сайта Sparkfun меняется линейно от 100 Ом до 10 кОм с номинальной мощностью в 1 Вт.
В случае, когда контакт не постоянен (например, он возникает только при нажатии пальцем), в схеме необходим подтягивающий резистор (к примеру, 100 кОм). Но у некоторых мембранных потенциометров есть магнит или скользящий контакт, всегда давящий на мембрану и поддерживающий постоянный контакт.
Резистивный сенсорный экран
Резистивный сенсорный экран похож на мембранный потенциометр, только резистивный материал есть на обоих его слоях, причём материал прозрачный. Передняя мембрана гибкая и также прозрачная, так что палец или стилус может надавить на неё и создать контакт. Технология использовалась в некоторых дешёвых карманных компьютерах или детских игрушках. Она всё ещё применяется, но революция смартфонов произошла благодаря ёмкостным экранам, не требующим гибкой мембраны.

Для 4-проводного резистивного сенсорного экрана напряжение подаётся на верхний слой, а результат считывается с нижнего, и таким образом считывается координата X. Затем всё происходит наоборот и получается координата Y. Всё это происходит за миллисекунды, и опрос экрана проводится непрерывно.
Все подсчёты ведутся вспомогательным контроллером. Резистивные экраны не такие отзывчивые, как ёмкостные, и для высокой точности обычно требуется стилус. Используются в очень дешёвых смартфонах.
Датчик давления

Датчики давления состоят из токопроводящего полимера, в котором есть проводящие и непроводящие частицы. Он расположен между двумя проводниками, переплетёнными, но не соединёнными. Прижимание полимера к проводникам создаёт контакт. Увеличение силы или площади нажатия увеличивает проводимость и уменьшает сопротивление. Без нажатия сопротивление конструкции может быть более 1 МОм, а точность обычно составляет около 10%. Этого достаточно для использования в музыкальных инструментах, протезах, датчиках наличия человека в машине и портативной электроники.
Гибкие и растяжимые датчики
Гибкий датчик – это резистивный материал, например, углерод, нанесённый на гибкую мембрану. При изгибании датчика материал растягивается и сопротивление увеличивается пропорционально радиусу изгиба. Судя по одной из спецификаций, сопротивление плоского датчика в 10 кОм может удваиваться при сгибании его на 180 градусов, когда оба конца соединяются. Распространённый пример – пальцы в игровых перчатках, такие, как в контроллере Nintendo Power Glove (в одном из проектов его хакнули для управления квадрокоптером). Сгибание пальцев приводит к изменению сопротивления, показывающему степень сгиба.


Датчик растяжения работает по тому же принципу, только его сопротивление увеличивается при растяжении. Резиновый шнур с углеродом выглядит, как шнур для банджи. Судя по одному примеру с Adafruit, 6-дюймовый шнурок сопротивлением 2,1 кОм при растяжении до 10" меняет сопротивление до 3,5 кОм. Ещё один пример – проводящая нить из стальных волокон, смешанных с полиэстером, а ещё бывают датчики в виде резинок или ремней.
Комментарии (15)
 - gluck5903.10.2016 21:44- > Но если так будет с ручкой громкости, нашим ушам покажется, что громкость растёт слишком быстро 
 
 Наборот, покажется слишком медленно.
 
 Кстати цифровые регуляторы громкости в современных телевизорах и прочих подобных девайсах в точности унаследовали эту фичу: попробуйте порегулировать громкость своего телевизора и вы обнаружите, что она изменяется от нуля до «почти максимума» за первую четверть шкалы и весьма незначительно — за три оставшиеся.
 
 Заодно у потребителя возникает мысль «ух ты, вон на 20 как орет, а на 100 наверное вообще дискотека будет». Но увы, не будет :) - KbRadar03.10.2016 23:41- Думается что это оставлено как раз из маркетинговых соображений. Аналогичное наблюдается на маломощных автомобилях типа hyundai getz — 90% мощности двигателя вводится при нажатии педали газа на четверть, и создаётся ощущение запаса мощности.  - NikitaE04.10.2016 02:03- Нет, тут дело не в маркетинге. 
 
 Просто при нажатии газа на четверть движок выходит на 2-2.5 килооборота в минуту — а у низкооборотистых двигателей именно там пик момента (жаль, кармы не хватает прикрепить гетцевский график со стенда). Точно так же «запас мощности» ощущается, например, на вольво, меринах и американцах (или, например, Hyundai Tiburon). На оборотистых японцах ситуация чуть другая: там, наоборот, машина дооооолго не едет, но если газануть в пол, до 6 килооборотов, начинается взлет.
 
 А ставят низкооборотистые движки либо для тяговитости, либо для всеядности (гетц можно заправлять 92 бензином, а какую-нибудь селику с 2ZZ — не очень), либо — как раз в случае маломощных машин —для хоть какого-то удобства на механической коробке. Потому что иначе разгон до 60 на машинке с пиковым моментом в 150 Нм занимал бы не 5 секунд, а все 30. Да и троонуться было бы ой как сложно.- Gordon0104.10.2016 03:07- Да нет, действительно делают так, что бы на 1/4 движения электронной педальки движок выдавал почти всю мощность. 
 Как житель ДВ, который всю жизнь ездил на японцах, про оборотистых японцев, которые едут с 6 оборотов посмеялся от души. Как говорится: аффтар, пеши исчо! На самом деле ты просто путаешь мощность и момент.
 А тронуться можно легко хоть на дайхатсу шарад с ее 80 Нм момента %) - NikitaE12.10.2016 22:38- Про японцев знаю мало — сам ездил из них только на Terrano II — , сужу только про графикам мощности, которые нагуглил :-) 
 
 А вот насчёт ЭПГ — на движках с тросовым приводом та же история. Проверял на целой прорве машин (правда, все были европейцами)
 
 
 
  - evtomax04.10.2016 14:55+2- Оба правы. С линейным переменником при низкой громкости регулировка происходит слишком быстро а при высокой громкости слишком медленно. 
 
 И в статье ошибка. Для регулировки громкости характеристика перменного резистора должна быть обратнологарифмической или показательной (импортные с буковой A). Графики, кстати, правильные, а вот подписи неправильные.
 
 - OtshelnikFm03.10.2016 21:46+6- Переменные резисторы есть еще с выключателем — в советское время встречались в переносных приемниках. Есть еще сдвоенные резисторы — применялись в стереоаппаратуре. Многооборотные есть — высокая точность подстройки. 
 - xirahai03.10.2016 22:19+6- Небольшая коллекция дискретных регуляторов, используемых в профессиональной аудиотехнике. Состоят из набора постоянных резисторов, переключаемых механическими контактами. Они меньше шумят по сравнению с обычными переменными резисторами, и обладают намного большим эксплуатационным ресурсом. 
 
  
 
 Здесь крупные фотоЛинейные регуляторы громкости с настоящими позолоченными контактами:
 
  
 
 Снаружи как бы линейный, а внутри установлен круговой переключатель:
 
  
 
  
 
  
 
 Малогабаритный дискретный аудио регулятор (пр-во Япония, 70-х годов) по размеру как обычный переменник:
 
  
  - Moog_Prodigy04.10.2016 17:55- Стоит добавить, что в проф. аудиотехнике линейные регуляторы называются фейдерами, также бывают они оптические (очень часто в DJ технике), бывают моторизованные (в консолях Pro Tools), бывают сенсорные (тачпад, вытянутый в длину и работающий только по одной координате)… много вкусностей наизобретали в этом направлении. 
 Ну и стоило бы хоть чуточку упомянуть микросхемы «цифровой резистор», получая по шине от контроллера некое число, микросхема меняет свое сопротивление ровно настолько, насколько указано между определенными выводами. По этой схеме — обычный энкодер — мк — микруха_резистор дорабатывают даже ламповые усилители во избежание шумов. Недостаток обычного переменника с графитовой дорожкой — протирается покрытие, и начинается что попало.
  - commanderxo03.10.2016 22:26+2- На первой схеме почти 15 Ватт постоянно уходят в тепло. Интересно, в разрабатываемой в 2016 году электронике такое ещё где-то применяется? 
 
 На второй схеме после потенциометра сигнал почему-то подаётся и на усилитель. Зачем?
 
 Зелёная линия на графике в середине статьи это что угодно, но не «true logarithmic». Логарифмическая кривая не симетрична относительно диагонали.
 
 Для «что нужно знать» не хватает главной ссылки на Easyelectronics. Трудно живётся англоязычным авторам.
  - KbRadar03.10.2016 23:44- И кстати на графике показана так называемая показательная, или экспоненциальная характеристика. 
  - quwy04.10.2016 01:32+2- Неплохо бы еще рассказать про многооборотники; сдвоенные; с отводами. А также о проблемах: дрейфе триммеров, шорохе, протирании до дыр. Ну и про альтернативы, управляемые электрическим сигналом от ЦАП. 
  - fundorin04.10.2016 13:29- Посоветуйте бюджетный DIY датчик изгиба. C амплитудой как на вот этой картинке. Спасибо. 
 http://medias.audiofanzine.com/images/normal/roland-aerophone-ae-10-1524701.jpg
 
 
           
 
izzholtik
Интересно, но маловато, и как будто оборвано посреди текста.
Какой-нибудь итог не помешал бы.