Как правильно выбрать видеокарту и максимально эффективно обрабатывать большие объемы данных и выполнять параллельные вычисления.

Введение

Один из главных факторов успешной работы с машинным обучением — это правильный выбор видеокарты, которая позволит максимально быстро и эффективно обрабатывать большие объемы данных и выполнять параллельные вычисления. Большинство задач машинного обучения, особенно тренировка глубоких нейронных сетей, требует интенсивной обработки матриц и тензоров. Отметим, что в последнее время все большую популярность набирают TPU, FPGA и специализированные AI-чипы.

Какие характеристики видеокарты важны для проведения машинного обучения?

При выборе видеокарты для машинного обучения есть несколько ключевых характеристик, на которые следует обратить внимание:

  • Вычислительная мощность: количество ядер/процессоров определяет параллельные вычислительные возможности видеокарты.

  • Объем памяти GPU: большой объем позволяет эффективно работать с большими данными и сложными моделями.

  • Поддержка специализированных библиотек: аппаратная поддержка таких библиотек, как CUDA или ROCm, ускоряет процесс обучения моделей.

  • Поддержка высокой производительности: быстрая память и широкая шина памяти обеспечивают высокую производительность при обучении моделей.

  • Совместимость с фреймворками машинного обучения: необходимо убедиться, что выбранная видеокарта полностью совместима с используемыми фреймворками и поддерживаемыми инструментами разработчика.

Сегодня в области производства графических процессоров для машинного обучения лидирует компания NVIDIA. Оптимизированные драйверы и поддержка CUDA и cuDNN позволяет GPU от NVIDIA значительно ускорить вычисления. 

Графические процессоры AMD хороши для игр, они менее распространены в области машинного обучения из-за ограниченной поддержки программного обеспечения и необходимости частых обновлений.

Сравнительная таблица видеокарт для машинного обучения

Объем памяти (Гб)

Тактовая частота, ГГц

Peak FP32 TFLOPS

Peak FP64 TFLOPS

Ядра CUDA

Тензорные ядра

Ядра RT

Пропускная способность памяти (Гб/с)

Разрядность шины видеопамяти (бит)

Максимальная мощность (Вт)

NVLink

Цена (USD)

Цена

(руб)

Tesla V100

16/32

1,24

15.7

7.8

5120

640

-

900

4096

300

Только в модели для серверов c NVLink

14 447

От 860 000

Quadro RTX 8000

48

1,35

16.3

0.46

4608

576

72

672

384

360

2 Quadro RTX 8000 GPUs

8200

От 460 000

A100

40/80

1,41

19.5

9.7

7936

432

-

1555

5120

300

MIG

10000

От 1 050 000

A 6000 Ada

48

2,5

91.1

1.44

18176

568

142

768

384

300

есть

6800

От 700 000

RTX A 5000

24

1,62

27.8

0.86

8192

256

64

768

384

230

2x RTX A5000

2000

От 245 000

RTX 4090

24

2,23

82.58

1.29

16384

512

128

1 008

384

450

нет

1599

От 138 000

RTX 4080

16

2,21

48.74

0.76

9728

304

76

717

256

320

нет

1199

От 110 000

RTX 4070

12

1,92

29.15

0.45

7680

184

46

504

192

200

нет

599

От 80 000

RTX 3090 TI

24

1.56

40.00

0.62

10752

336

84

1008

384

450

есть

2000

От 120 000

RTX 3080 TI

12

1,37

34.10

0.53

10240

320

80

912

384

350

нет

1499

От 85 000

NVIDIA Tesla V100

GPU с тензорными ядрами, разработанный для работы с технологиями искусственного интеллекта, высокопроизводительными вычислениями (HPC) и задачами машинного обучения. Основанный на архитектуре NVIDIA Volta, Tesla V100 обеспечивает производительность в 125 триллионов операций с плавающей запятой в секунду (TFLOPS). 

Плюсы:

  • Высокая производительность: видеокарта Tesla V100 оснащена архитектурой Volta с 5120 ядрами CUDA, что обеспечивает очень высокую производительность при выполнении задач машинного обучения. Она способна обрабатывать большое количество данных и выполнять сложные вычисления с высокой скоростью.

  • Большой объем памяти: 16 гигабайт памяти HBM2 позволяют эффективно обрабатывать большие объемы данных при обучении моделей, что особенно полезно при работе с крупными датасетами. Разрядность шины видеопамяти (4096 бит) позволяет обеспечить высокую скорость передачи данных между процессором и видеопамятью, улучшая производительность обучения и вывода моделей машинного обучения.

  • Технологии глубокого обучения: видеокарта поддерживает различные технологии глубокого обучения, в том числе Tensor Cores, которые ускоряют вычисления с использованием операций с плавающей точкой. Это позволяет значительно снизить время обучения моделей и повысить их производительность.

  • Гибкость и масштабируемость: Tesla V100 может использоваться как в настольных компьютерах, так и в серверных системах. Она поддерживает различные фреймворки машинного обучения, такие как TensorFlow, PyTorch, Caffe и другие, что обеспечивает гибкость в выборе инструментов для разработки и обучения моделей.

Минусы:

  • Высокая стоимость: NVIDIA Tesla V100 является профессиональным решением и имеет соответствующую цену. Ее стоимость (14 447 долларов) может быть довольно высокой для частных лиц или небольших команд машинного обучения. 

  • Потребление энергии и охлаждение: видеокарта Tesla V100 потребляет значительное количество энергии и генерирует значительное количество тепла. Это может потребовать соответствующих мер по охлаждению в системе, а также привести к повышенным энергозатратам.

  • Требования к инфраструктуре: для полноценного использования Tesla V100 необходима подходящая инфраструктура, в том числе мощный процессор и достаточное количество оперативной памяти.

NVIDIA A100

Обеспечивает производительность и гибкость, необходимые для машинного обучения. Работая на базе новейшей архитектуры NVIDIA Ampere, A100 обеспечивает до пятикратного повышения производительности обучения по сравнению с графическими процессорами предыдущего поколения. NVIDIA A100 поддерживает множество приложений и фреймворков для искусственного интеллекта. 

Плюсы:

  • Высокая производительность: большое количество ядер CUDA — 4608.

  • Большой объем памяти: у видеокарты NVIDIA A100 — 40 ГБ памяти HBM2, что позволяет эффективно работать с большими объемами данных при обучении моделей глубокого обучения.

  • Поддержка технологии NVLink: эта технология позволяет объединять несколько видеокарт NVIDIA A100 в одну систему для выполнения параллельных вычислений, что повышает производительность и ускоряет обучение моделей.

Минусы:

  • Высокая стоимость: NVIDIA A100 является одной из самых мощных и производительных видеокарт на рынке, поэтому имеет высокую стоимость — 10 000 долларов. 

  • Потребление энергии: использование видеокарты NVIDIA A100 требует значительного количества энергии. Это может привести к увеличению затрат на электроэнергию и требовать дополнительных мер предосторожности при развертывании в больших центрах обработки данных.

  • Совместимость с программным обеспечением: видеокарта NVIDIA A100 требует соответствующего программного обеспечения и драйверов для оптимальной работы. Некоторые программы и фреймворки машинного обучения могут не полностью поддерживать эту конкретную модель видеокарты.

NVIDIA Quadro RTX 8000

Одна карта Quadro RTX 8000 способна визуализировать сложные профессиональные модели с реалистичными тенями, отражениями и преломлениями, предоставляя пользователям быстрый доступ к информации. При использовании технологии NVLink ее память можно расширить до 96 ГБ.

Плюсы:

  • Высокая производительность: Quadro RTX 8000 обладает мощным графическим процессором и 5120 ядрами CUDA.

  • Поддержка технологии Ray Tracing: аппаратное ускорение трассировки лучей позволяет создавать фотореалистичные изображения и эффекты освещения. Это может быть полезным при работе с визуализацией данных или компьютерной графикой в рамках задач машинного обучения.

  • Большой объем памяти: 48 ГБ графической памяти GDDR6 обеспечивают достаточное пространство для хранения больших моделей машинного обучения и данных.

  • Поддержка библиотек и фреймворков: Quadro RTX 8000 полностью совместима с популярными библиотеками и фреймворками машинного обучения, такими как TensorFlow, PyTorch, CUDA, cuDNN и другими.

Минусы:

  • Высокая стоимость: Quadro RTX 8000 является профессиональным графическим ускорителе, что делает его достаточно дорогим в сравнении с другими видеокартами. Актуальная стоимость данной видеокарты составляет 8200 долларов. 

RTX A6000 Ada

Эта видеокарта предлагает идеальное сочетание производительности, цены и низкого энергопотребления, что делает его оптимальным вариантом для профессионалов. Благодаря передовой архитектуре CUDA и 48 ГБ памяти GDDR6, A6000 обеспечивает высокую производительность. Обучение на RTX A6000 может выполняться с максимальными размерами партий.

Плюсы:

  • Высокая производительность: архитектура Ada Lovelace, ядра RT третьего поколения, тензорные ядра четвертого поколения и ядра CUDA нового поколения с 48 ГБ видеопамяти.

  • Большой объем памяти: видеокарты NVIDIA RTX A6000 Ada оснащена 48 ГБ памяти, что позволяет эффективно работать с большими объемами данных при обучении моделей.

  • Низкое энергопотребление.

Минусы:

  • Высокая стоимость: RTX A6000 Ada стоит около 6800 долларов.

NVIDIA RTX A5000

RTX A5000 основана на архитектуре NVIDIA Ampere и оснащена 24 Гб памяти, что обеспечивает быстрый доступ к данным и ускоряет обучение моделей машинного обучения. Благодаря 8192 ядрам CUDA и 256 тензорным ядрам карта обладает огромной вычислительной мощностью, позволяющей выполнять сложные операции. 

Плюсы:

  • Высокая производительность: большое количество ядер CUDA и высокая пропускная способность памяти позволяют обрабатывать большие объемы данных с высокой скоростью.

  • Поддержка аппаратного ускорения AI: видеокарта RTX A5000 предлагает аппаратное ускорение для операций и алгоритмов, связанных с искусственным интеллектом.

  • Большой объем памяти: 24 ГБ GDDR6 видеопамяти позволяют работать с большими наборами данных и сложными моделями машинного обучения. 

  • Поддержка фреймворков машинного обучения: видеокарта RTX A5000 хорошо интегрируется с популярными фреймворками машинного обучения, такими как TensorFlow и PyTorch. Она имеет оптимизированные драйверы и библиотеки, которые позволяют эффективно использовать ее возможности для разработки и обучения моделей.

Минусы:

  • Потребление энергии и охлаждение: видеокарты такого класса обычно потребляют значительное количество энергии и генерируют большое количество тепла во время работы. Для эффективного использования RTX A5000 необходимо обеспечить правильное охлаждение и иметь достаточную мощность блока питания.

NVIDIA RTX 4090

Эта видеокарта обладает высокой производительностью и функциями, которые делают ее идеальной для приведения в действие новейшего поколения нейронных сетей. 

Плюсы:

  • Выдающаяся производительность: NVIDIA RTX 4090 способна эффективно обрабатывать сложные вычисления и большие объемы данных, ускоряя процесс обучения моделей машинного обучения.

Минусы:

  • Охлаждение — одна из основных проблем, с которой пользователи могут столкнуться при использовании NVIDIA RTX 4090. Из-за мощного тепловыделения карта может нагреваться до критического уровня и автоматически отключаться для предотвращения повреждений. Это особенно актуально в многокартных конфигурациях.

  • Ограничения в конфигурации: конструкция графического процессора ограничивает возможность установки большего количества карт NVIDIA RTX 4090 в рабочую станцию.

NVIDIA RTX 4080

Представляет собой мощную и эффективную графическую карту, обеспечивающую высокую производительность в области искусственного интеллекта. За счет высокой производительности и цены данная карта является хорошим выбором для разработчиков, желающих получить максимальную отдачу от своих систем. RTX 4080 имеет трехслотовый дизайн, что позволяет установить до двух графических процессоров в рабочем компьютере.

Плюсы:

  • Высокая производительность: карта оснащена 9728 ядрами NVIDIA CUDA, что обеспечивает высокую производительность вычислений в задачах машинного обучения. Также наличие тензорных ядер и поддержка трассировки лучей способствует более эффективной обработке данных.

  • Стоимость карты — 1199 долларов, что позволяет получить производительное решение для машинного обучения частным лицам и небольшим командам.

Минусы:

  • Ограничение SLI: карта не поддерживает NVIDIA NVLink с функцией SLI, что означает, что нельзя объединять несколько таких карт в режиме SLI для увеличения производительности.

NVIDIA RTX 4070

Эта видеокарта создана на основе архитектуры NVIDIA Ada Lovelace и оснащена 12 Гб памяти, что обеспечивает быстрый доступ к данным и ускоряет обучение моделей машинного обучения. Благодаря 7680 ядрам CUDA и 184 тензорным ядрам карта обладает хорошей вычислительной мощностью, позволяющей выполнять сложные операции. Отличный выбор для всех, кто только начинает изучать машинное обучение.

Плюсы:

  • Высокая производительность: 12 Гб памяти и 7680 ядер CUDA позволяют работать с большими объемами данных.

  • Низкое энергопотребление: 200 Вт.

  • Низкая стоимость — 599 долларов.

Минусы:

  • Ограниченная память: 12 ГБ памяти ограничивают возможности обработки больших объемов данных в некоторых приложениях машинного обучения.

  • Нет поддержки NVIDIA NVLink и SLI: карты не поддерживают технологию NVIDIA NVLink для объединения нескольких карт в системе параллельной обработки. Это может ограничить масштабируемость и производительность в многокартных конфигурациях.

NVIDIA GeForce RTX 3090 TI

Это игровой GPU, который также может быть использован для глубокого обучения. RTX 3090 TI позволяет достичь пиковой производительности одинарной точности (FP32) в размере 13 терафлопсов, а также оснащен 24 ГБ видеопамяти и 10 752 ядрами CUDA.

Плюсы:

  • Высокая производительность: архитектура Ampere и 10 752 ядра CUDA позволяют решать сложные задачи машинного обучения.

  • Ускорение аппаратного обучения: RTX 3090 TI поддерживает технологию Tensor Cores, которая обеспечивает аппаратное ускорение операций нейронной сети. Это может значительно ускорить процесс обучения моделей глубокого обучения.

  • Большой объем памяти: с 24 Гб памяти GDDR6X RTX 3090 TI может обрабатывать большие объемы данных в памяти без необходимости частых операций чтения и записи на диск. Это особенно полезно при работе с крупными наборами данных.

Минусы:

  • Потребление энергии: видеокарта имеет высокое энергопотребление (450 Вт), что требует мощного блока питания. Это может повлечь дополнительные затраты и ограничить возможности использования видеокарты в некоторых системах, особенно в случае использования нескольких карт в параллельных вычислениях.

  • Компатибельность и поддержка: возможны проблемы совместимости и несовместимости с некоторыми программными платформами и библиотеками машинного обучения. В некоторых случаях могут потребоваться специальные настройки или обновления программного обеспечения для полной поддержки видеокарты.

NVIDIA GeForce RTX 3080 TI

RTX 3080 TI — отличная карта среднего уровня, которая обеспечивает высокую производительность и является хорошим выбором для тех, кто не хочет тратить большие суммы на профессиональные видеокарты.

Плюсы:

  • Высокая производительность: RTX 3080 оснащена архитектурой Ampere с 8704 ядрами CUDA и 12 ГБ памяти GDDR6X, что обеспечивает высокую вычислительную мощность для выполнения сложных задач машинного обучения.

  • Ускорение аппаратного обучения: видеокарта поддерживает Tensor Cores, что позволяет получить значительное ускорение при выполнении операций нейронной сети. Это способствует более быстрому обучению моделей глубокого обучения.

  • Относительно доступная цена — 1499 долларов.

  • Ray Tracing и DLSS: RTX 3080 поддерживает аппаратное ускорение трассировки лучей (Ray Tracing) и Deep Learning Super Sampling (DLSS). Эти технологии могут быть полезными при визуализации результатов моделей и обеспечивают более высокое качество графики.

Минусы:

  • Ограниченный объем памяти — 12 ГБ, может ограничить возможности работы с большими объемами данных или сложными моделями, требующими больше памяти.

Если вас интересует машинное обучение, вам понадобится хорошая видеокарта (GPU), чтобы приступить к работе. Но с таким разнообразием типов и моделей на рынке может быть сложно определить, какая из них подходит именно вам.


Арендуйте выделенные и виртуальные GPU серверы с профессиональными графическими картами NVIDIA RTX A5000 / A4000 в надежных дата-центрах класса TIER III в Москве и Нидерландах. Принимаем оплату за услуги HOSTKEY в Нидерландах в рублях на счет российской компании. Оплата с помощью банковских карт, в том числе и картой МИР, банковского перевода и электронных денег.

Комментарии (3)


  1. iskateli
    11.07.2023 09:24
    +3

    Одной из самых главных характеристик (количество терафлопсов) нет в таблице, а в тексте указано только для двух видеокарт.


  1. FuzzyWorm
    11.07.2023 09:24
    +1

    Ну и в чем между ними разница с практической точки зрения? Какая в разных задачах производительность на доллар? Для каких задач нужно покупать объем и скорость памяти, а для каких - количество ядер?


    1. berng
      11.07.2023 09:24

      Это не совсем зависит от задач, это зависит больше от способов оптимизации обучения. Ядра обеспечивают скорость обработки загруженного куска датасета, а объем и скорость памяти - максимальный размер одновременно загружаемого куска датасета (условно говоря - батча). И то, и другое влияют на скорость обучения, чем больше - тем лучше.

      Но субъективно, насколько мне известно, чем больше память, тем более сложные задачи вы можете решать (им банально нужно больше памяти за раз, и этот кусок должен целиком поместиться в память карты) и тем быстрее, а чем больше ядер - только быстрее (на сложность решаемых задач не влияет, только на скорость их расчета). Гонитесь за высокой сложностью моделей или работаете с данными огромных размерностей - старайтесь увеличивать память, чтобы моделька и батч данных в нее влезли.