image Жизнь — самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов?

Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира. В ней авторы рассматривают как новейшие экспериментальные данные, так и открытия с переднего края науки, и делают это в неповторимо доходчивом стиле. Джим Аль-Халили и Джонджо Макфадден рассказывают о недостающем компоненте квантовой механики; феномене, который лежит в основе этой самой таинственной из наук.

Кинетический изотопный эффект


Вы когда-нибудь пробовали заехать на вершину холма на велосипеде? Если пробовали, то вас наверняка обгоняли пешеходы. На ровной дороге вы, управляя велосипедом, без труда обогнали бы всех пешеходов и даже бегунов. Так почему же езда на велосипеде по склону холма становится менее продуктивной?

Теперь представьте себе, что вы слезли с велосипеда и идете пешком, ведя его за собой по ровной дороге или по склону холма. Сейчас все очевидно. Идя по склону, вы не только должны сами подниматься, но и толкать вверх велосипед. Вес велосипеда, который не имел особого значения при езде по горизонтальной поверхности, теперь работает против вас, когда вы пытаетесь подняться на вершину холма: вы тянете на себе велосипед, на протяжении многих метров преодолевая силу притяжения Земли. Вот почему производители гоночных велосипедов придают большое значение тому, насколько легкой будет модель велосипеда. Безусловно, вес объекта имеет большое значение в том случае, если его придется двигать человеку, однако наш пример с велосипедом скорее говорит о том, что важен не только вес объекта, который приходится толкать, но и тип движения.

А сейчас вообразите, что вам хочется узнать, какая между двумя городами, скажем А и Б, пролегает местность: ровная или холмистая. При этом у вас не было возможности поехать в эти города и проверить это лично. Если вам известно, что между этими городами есть почтовое сообщение, причем почтальоны используют легкие и тяжелые велосипеды, один из вариантов выяснить особенности рельефа таков: необходимо отправить наборы одинаковых посылок из одного города в другой, при этом половину посылок передать с почтальонами на легких велосипедах, а вторую — с почтальонами на тяжелых. Если выяснится, что доставка всех ваших посылок заняла примерно одинаковое время, вы можете сделать вывод о том, что между городами местность скорее ровная. Если же доставка посылок на тяжелых велосипедах заняла гораздо больше времени, вы поймете, что местность между А и Б скорее холмистая. Таким образом, наши почтальоны-велосипедисты занимаются зондированием неисследованных территорий.

Атомы любого химического элемента бывают, как и велосипеды, разного веса. Возьмем, к примеру, водород — самый простой элемент, который тем не менее представляет для нас с вами большой интерес. Каждый элемент определяется количеством протонов в ядре, которое совпадает с количеством электронов, окружающих ядро. Так, в ядре водорода находится один протон, в ядре гелия — два, лития — три и т. д. Однако ядра атомов содержат не только протоны, но и нейтроны, о которых мы упоминали в главе 1, когда говорили о слиянии ядер водорода внутри Солнца. Если в ядро попадают нейтроны, он становится тяжелее и его физические свойства меняются. Атомы одного элемента, отличающиеся количеством нейтронов в ядре, называются изотопами. Обычный изотоп водорода — самый легкий, поскольку состоит только из одного протона и электрона. Это самая распространенная форма водорода. Существует еще два более редких изотопа водорода: дейтерий (D), имеющий один лишний электрон, и тритий (Т), у которого два лишних нейтрона.

Поскольку химические свойства элементов обусловливаются в основном количеством электронов в атомах, разные изотопы одного и того же элемента, отличающиеся количеством нейтронов в атомных ядрах, будут иметь очень сходные, однако не идентичные химические свойства. Кинетический изотопный эффект показывает, насколько чувствительна химическая реакция к замене атомов в молекуле реагирующего вещества на более тяжелые изотопы. Он определяется как отношение скоростей реакции, протекающей с тяжелыми и легкими изотопами. Например, если в реакции участвует вода, тогда атомы водорода в молекулах H2O могут заменяться своими более тяжелыми собратьями — дейтерием и тритием, образуя соответственно молекулы D2O или T2O. Точно как наши почтальоны на велосипедах, реакция может отреагировать на изменение веса атомов, а может и не отреагировать — все зависит от пути, который выберут вещества, вступающие в реакцию, чтобы в итоге стать ее продуктами.

Существует несколько механизмов, обеспечивающих сильные кинетические изотопные эффекты. Одним из этих механизмов является квантовое туннелирование — процесс, который, как и езда на велосипеде, зависит от массы частицы, пытающейся преодолеть барьер. Чем больше масса частицы, тем меньше проявляются ее волновые свойства, а следовательно, тем ниже вероятность того, что частица преодолеет энергетический барьер. Поэтому увеличение массы атома вдвое, например, в случае замены обычного изотопа водорода дейтерием резко снижает вероятность его участия в квантовом туннелировании.

Таким образом, наличие сильного кинетического изотопного эффекта может свидетельствовать о том, что механизм реакции — путь от реагирующих веществ до продуктов — подразумевает квантовое туннелирование. Однако это не единственно возможный вывод, поскольку эффект может быть обусловлен и классическими химическими явлениями, не связанными с законами квантовой механики. Но если в ходе реакции имеет место именно квантовое туннелирование, реакция должна определенным образом отреагировать на изменение температуры: ее темп перестает ускоряться и выравнивается при низкой температуре, как и показал опыт Де-волта и Чанса в случае туннелирования электронов. То же самое показали опыты Клинман и ее команды для фермента АДГ, причем в ходе экспериментов были получены строгие доказательства того, что квантовое туннелирование было в данном случае частью механизма реакции.

Команде ученых под руководством Клинман удалось получить важные доказательства того, что туннелирование протонов часто происходит в ходе ферментативных реакций при температурах, при которых также протекают жизненные процессы. Другие коллективы ученых, в том числе и группа под руководством Найджела Скраттона из Манчестерского университета, проводили подобные эксперименты с другими ферментами и наблюдали кинетические изотопные эффекты, указывающие на то, что реакция сопровождается квантовым туннелированием. И все же вопрос о том, каким образом ферменты поддерживают квантовую когерентность и способствуют возникновению туннельного эффекта, остается противоречивым. Некоторое время считалось, что ферменты не статичны, что в ходе реакций они постоянно совершают колебания, движутся. Например, «челюсти» коллагеназы открываются и захлопываются каждый раз, когда они разрывают коллагеновую связь. Ученые полагали, что подобные движения, наблюдающиеся в ходе реакции, являются случайными либо призваны захватить субстраты и выровнять и упорядочить все атомы, вступающие в реакцию. Однако в наше время специалисты в области квантовой биологии утверждают, что подобные колебания — так называемые «приводные двигатели» и основная их функция — максимально близко подвести друг к другу атомы и молекулы, чтобы квантовое туннелирование частиц (электронов и протонов) стало возможным. К этой теме — одной из самых захватывающих и быстроразвивающихся в квантовой биологии — мы вернемся в последней главе нашей книги.

Так что же составляет «квантовую часть» квантовой биологии


Каждую отдельную биомолекулу, которая существует или когда-либо существовала в любой живой клетке, создали и разрушили ферменты. Ферменты как никакая другая субстанция близки к понятию «движущих сил жизни». Открытие того, что некоторые (а возможно, и все) ферменты функционируют на основе дематериализации частиц в одном месте пространства и мгновенной их материализации в другой точке, позволяет нам по-новому взглянуть на загадку жизни. Несмотря на то что многие вопросы, связанные с функционированием ферментов, пока не до конца понятны (например, роль перемещения белков), нет сомнений в том, что квантовое туннелирование играет большую роль в механизме их работы.

Несмотря на это, мы не можем не принимать во внимание критических замечаний, высказываемых многими учеными. Они признают открытия Клинман, Скраттона и других исследователей, однако утверждают, что квантовые эффекты играют в биологии такую же роль, как и в работе паровозов: их можно наблюдать, однако они в целом никак не способствуют пониманию того, как функционирует вся система. Данный аргумент нередко звучит в спорах о том, научились ферменты извлекать выгоду из квантовых явлений вроде туннелирования в ходе эволюции или нет. Критики отстаивают мнение, что возникновение квантовых явлений в ходе биологических процессов неизбежно благодаря тому, что большинство биохимических реакций попросту протекают на атомном уровне. Квантовое туннелирование вовсе не волшебство; это явление происходит в нашей Вселенной с самого ее возникновения. Разумеется, то, что является результатом «изобретательности» жизни, не может быть фокусом. И все же мы склонны полагать, что возникновение туннельного эффекта на фоне активности фермента не является неизбежным, учитывая условия внутриклеточной среды — те самые высокие температуры, влажность и сумбурную толкотню молекул.

Как вы помните, пространство живой клетки характеризуется теснотой. Клетка буквально набита молекулами со сложной структурой, которые непрерывно находятся в состоянии волнения и турбулентности, а именно в состоянии хаотичного движения. Напомним, молекулы похожи на разлетающиеся в разные стороны и отталкивающиеся друг от друга бильярдные шары (об этом мы говорили в предыдущем разделе в связи с тем, что заставляет паровоз ехать вверх по склону холма). Как вы помните, именно это хаотичное движение частиц рассеивает и разрушает хрупкую квантовую когерентность, благодаря чему привычный для нас мир кажется нам «нормальным». Ученые не ожидали, что квантовая когерентность может сохраняться при молекулярной турбулентности, поэтому наблюдение таких квантовых эффектов, как туннелирование, в бурном море живой клетки стало удивительным открытием. Каких-то десять или чуть больше лет назад большинство ученых отказались от мысли о том, что туннелирование и другие неустойчивые квантовые явления могут наблюдаться в биологических процессах. Факт, что эти явления были обнаружены в биологических средах, говорит о том, что жизнь принимает особые меры, чтобы извлечь максимальную выгоду из квантового мира и поддерживать работу своих клеток. Но какие именно меры принимает жизнь? Каким образом жизни удается держать основного врага квантового поведения частиц — декогерентность — на расстоянии? Это одна из величайших тайн квантовой биологии, к разгадке которой ученые постепенно продвигаются. Об этом мы поговорим в последней главе нашей книги.

Но прежде, чем начать новую тему нашего разговора, давайте вернемся к тому месту, где мы оставили нашу наноподлодку, а именно в активный центр фермента коллагеназы внутри исчезающего хвоста головастика. Мы быстро покидаем активный центр, как только «челюсти» фермента раскрываются, высвобождая коллагеновую цепочку (и нас с вами). Мы прощаемся с молекулой фермента, похожей на моллюска, который отправляется к следующей пептидной связи в цепи, чтобы разрушить ее. Затем мы совершаем короткое путешествие по организму головастика и наблюдаем обычную работу некоторых других ферментов, которая так же важна для жизнедеятельности организма, как и работа коллагеназы. Следуя за клетками, покидающими исчезающий на глазах хвост головастика и направляющимися в развивающиеся задние конечности, мы наблюдаем возникновение новых коллагеновых волокон, которые прокладываются, словно новые железнодорожные пути, для ускорения формирования организма взрослой лягушки. Зачастую они возникают из тех самых клеток исчезающего хвоста. Новые волокна образуются благодаря ферментам, которые захватывают блоки аминокислот, освобожденные коллагеназой, и сплетают их в новые коллагеновые волокна. У нас нет времени на то, чтобы погрузиться в эти ферменты, однако стоит сказать, что в их активных центрах мы наблюдали бы тот же тщательно поставленный танец, что и в коллагеназе, только с обратной последовательностью движений. Биомолекулы, от которых зависит жизнь, — будь то жиры, ДНК, аминокислоты, белки, сахара — формируются и разрушаются различными ферментами. Кроме того, любое действие, которое совершает молодая лягушка, обусловлено деятельностью ферментов. Например, когда животное замечает муху, электрические импульсы передаются от глаз в мозг посредством особых ферментов-нейромедиаторов, содержащихся в нервных клетках. Когда лягушка выбрасывает свой длинный язык, его мышечные сокращения, благодаря которым лягушка ловит муху и тянет добычу в рот, контролируются другим ферментом — миозином, содержащимся в мышечных клетках. Когда муха попадает в желудок лягушки, в дело вступает целая группа ферментов, ускоряющих переваривание и всасывание питательных веществ. Другие ферменты отвечают за то, чтобы эти питательные вещества трансформировались в ткани организма. Ферменты дыхательной цепи, содержащиеся в митохондриях, помогают трансформировать питательные вещества в необходимую для организма энергию.

Любой этап жизнедеятельности лягушек и всех остальных живых организмов, любой процесс, поддерживающий их и нашу с вами жизнь, поддерживается и ускоряется ферментами — настоящими двигателями жизни. Их каталитические свойства обусловлены способностью некоторых элементарных частиц исполнять отточенные хореографические номера, а значит, и соприкасаться с квантовым миром и использовать в жизненных целях его странные законы.

Однако туннелирование частиц далеко не единственное явление квантового мира, из которого жизнь извлекает для себя выгоды. В следующей главе мы поговорим о том, что в важнейшей химической реакции биосферы участвует еще одно загадочное явление квантового мира.

Более подробно с книгой можно ознакомиться на сайте издательства
Оглавление
Отрывок

Для читателей данного блога скидка 15% по купону — Жизнь
Поделиться с друзьями
-->

Комментарии (11)


  1. vsovetov
    20.09.2016 12:27
    +6

    Существует еще два более редких изотопа водорода: дейтерий (D), имеющий один лишний электрон, и тритий (Т), у которого два лишних электрона.

    простите, ЧТО?


    1. boogiebomzh
      20.09.2016 13:00
      +12

      Вас же предупредили: «книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира».


      1. vsovetov
        20.09.2016 13:23
        +3

        как-то уж очень резко, даже несмотря на предупреждение )


    1. sumanai
      20.09.2016 16:13

      Вторые электроны исправили, а первый забыли. Теперь я сконфужен ещё больше.


      1. saboteur_kiev
        20.09.2016 16:42

        Да ладно, теперь понятно, что это опечатка ). Скоро исправят.


  1. Ostrie_Brevna
    20.09.2016 13:53

    По-моему предыдущий комментатор прав. Изотопы водорода различаются числом нейтронов в ядре, как и вообще любые изотопы — отличаются строениями ядра, а электронная оболочка вообще штука изменчивая и тут не совсем причём. Мы же не называем изотопами ионы (у которых «оторваны» или «приклеены» лишние электроны)? Это текст из книги или он сочинён «по мотивам»? Вообще же уважаю научно-популярную серию изд-ва «Питер» и хотелось бы точности в анонсах к книгам этой серии…


    1. ph_piter
      20.09.2016 14:22

      Спасибо, разумеется имелись в виду нейтроны. Поправим.


      1. Ostrie_Brevna
        21.09.2016 13:08

        Не полностью. Теперь у вас в одной части фразы всё ещё остались электроны, а во второй стали нейтроны: «Существует еще два более редких изотопа водорода: дейтерий (D), имеющий один лишний электрон, и тритий (Т), у которого два лишних нейтрона».


  1. worldmind
    20.09.2016 16:15

    Как-то смотрел лекцию где появление мутаций объяснялось квантовым эффектом туннелирования, я могу не точно передать, но что-то вроде того, что атомы из нуклеотида одной нити иногда телепортируются к нуклеотиду второй нити.
    Т.е. мутации будут происходить даже при полном отсутствии мутагенных факторов, это реально важный для жизни механизм.
    И вот ещё попалась статейка о том что ДНК вообще не разваливается только благодаря квантовым эффектам, правда статья не новая, не знаю насколько подтвердились эти данные.


    1. napa3um
      20.09.2016 17:13
      +1

      ДНК разваливается порядка нескольких сотен раз в секунду, но постоянно восстанавливается различными механизмами репарации. Это нормальное функционирование клетки.


  1. OksikOneC
    20.09.2016 18:00
    +3

    Я читал эту книгу около года назад. Свой отзыв разобью логически на две части.

    Часть 1. Рекомендации для тех, кто не знает — понравится ему книга или нет.
    Ниже 3 шага, направленные на выяснение, интересно ли вам будет читать эту книгу или нет:

    1. Предлагаю посмотреть выступление одного из авторов на TED по по теме квантовой биологии. _https://www.ted.com/talks/jim_al_khalili_how_quantum_biology_might_explain_life_s_biggest_questions?language=ru

    2. Если Вас заинтересовал п.1, предлагаю посмотреть вторую серию («Let There Be Life») документального фильма BBC «The Secrets of Quantum Physics». Фильм полностью переведен на русский, страждущий найдет без труда. Оригинальный фрагмент фильма можно посмотреть тут: _http://www.bbc.co.uk/programmes/b04v85cj

    3. Если вы прошли п.2, то настоятельно рекомендую прочитать статью этих же самых авторов:
    _http://discovermagazine.com/2014/dec/17-this-quantum-life

    И вот теперь вывод: если Вам понравились материалы п.1-2, и вас заинтересовало исследование в п.3, то Вам скорее всего понравится и книга.

    Часть 2. Непосредственно мое личное мнение про книгу.

    В описании книги ставится вопрос: «Жизнь – самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь?». Если вы надеетесь, что в книге есть какие-то фундаментальные научные попытки ответить на этот вопрос, то скорее всего — вы разочаруетесь. В книге идут попытки объяснения сложно объяснимых аспектов из биологии, наподобие — как распознаются запахи, как ориентируются птицы при миграции. Но главный вопрос, даже с точки зрения самих авторов, затрагивается очень поверхностно уже совсем ближе к концу книги. Т.е. вводная одна, название одно, а книжка — ну про другое, да. Потом, после прочтения у меня не осталось впечатления какого-то единого представления о… назовем это сути. Вот о сути того, чего хотели донести авторы, единой такой конвы — лично у меня впечатления не сложилось. Авторы пытаются разобраться в какой-то теме, сразу же углубляются в справочную информацию, потом разбавляют ее какими-то жизненными примерами и вроде бы в тему, но как все это между собой вяжется, это большой вопрос. Я например до сих пор не понял, а корректно ли сравнивать работу в цикле Карно с работой биологических фотоэлементов в хлоропластах листьев. У авторов получился квантовый тепловой двигатель, который делает работу подобную к классическому тепловому двигателю, но с электронами вместо пара и фотонов света, заменяющего источник тепла. Также в одной из глав авторы приравнивают нейроны с логическими элементами компьютера, на основании этой метафоры они задают провокационные вопросы, типа ну почему ж тогда компьютеры, подключенные к сети интернет не сознательны, а мозги — сознательны?

    Надеюсь от моего отзыва книга хуже не стала ;)