Игра для двоих может сказать, есть ли во Вселенной бесконечное количество сложности
Сколько независимых свойств есть у Вселенной? Простая игра может дать ответ на этот вопрос
Один из величайших и самых базовых вопросов в физике касается количества способов настройки материи во Вселенной. Если взять материю и перегруппировать её, затем снова перегруппировать, и снова – исчерпаем ли мы все возможные конфигурации, или эти перестановки можно делать бесконечно?
Физикам это неизвестно, но при отсутствии определённости они делают предположения. А эти предположения различаются в зависимости от области физики. В одной области физики предполагают конечное число конфигураций. В другой – бесконечное. Пока что невозможно сказать, кто из них прав.
Но за последнюю пару лет одна группа математиков и специалистов по информатике занималась созданием игр, теоретически способных закрыть этот вопрос. В играх участвуют два игрока, изолированных друг от друга. Игроки задают вопросы, и выигрывают, если их ответы оказываются определённым образом согласованными. Количество выигрышей связано с количеством различных способов конфигурации Вселенной.
«Существует философский вопрос: конечно или бесконечно число измерений Вселенной?» – сказал Генри Юйэнь, специалист по теоретической информатике из университета Торонто. «Люди думают, что проверить это невозможно, но один из возможных способов решить вопрос – использовать игру, придуманную Уильямом».
Юйэнь говорит о Уильяме Слофстра, математике из университета Ватерлоо. В 2016 году Слофстра изобрёл игру для двоих игроков, присваивающих значения переменным в сотнях простых уравнений. При нормальных условиях проиграть могут даже самые умелые игроки. Но Слофстра доказал, что если дать им доступ к бесконечному количеству необычных ресурсов – запутанных квантовых частиц – они смогут выигрывать всегда.
Другие исследователи с тех пор подправляли результат Слофстры. Они доказали, что для достижения того же умозаключения не нужно играть в игру с сотнями вопросов. В 2017 году три исследователя доказали, что существуют игры всего из пяти вопросов, в которые можно выигрывать в 100% случаев, если у игрока будет доступ к неограниченному количеству запутанных частиц.
Все эти игры основаны на играх, придуманных более 50 лет назад физиком Джоном Стюартом Беллом. Белл разработал игры для проверки одной из самых странных гипотез, выдвинутых квантовой механикой о физическом мире. Полвека спустя его идеи могут оказаться полезными не только для этого.
Волшебные квадраты
Белл придумал «нелокальные» игры, требующие от игроков нахождения на большом расстоянии друг от друга, без возможности общаться. Каждый игрок отвечает на вопрос. Игроки выигрывают или проигрывают в зависимости от совместимости их ответов.
Одна из таких игр – волшебный квадрат. Игроки Алиса и Боб рисуют сетку 3х3 квадратика. Судья просит Алису заполнить один ряд в сетке – допустим, второй – написав в каждой клеточке 1 или 0, так, чтобы сумма чисел в ряду была нечётной. Затем судья просит Боба заполнить один из столбцов так, чтобы сумма была чётной. Алиса и Боб выигрывают, если они напишут одно и то же число на пересечении их строки и столбца.
Подвох в следующем: Алиса и Боб не знают, какую строчку или столбец судья попросил заполнить их соперника. «Такая игра была бы тривиальной, если бы игроки могли общаться, — сказал Ричард Клив, изучающий квантовые вычисления в университете Ватерлоо. – Но то, что Алиса не знает, что попросили сделать Боба, и наоборот, означает, что игра становится более сложной».
Кажется, что в игре с волшебным квадратом и других подобных играх не существует способа выиграть в 100% случаев. И действительно, в мире, описываемом классической физикой, Алиса и Боб могут достичь максимума в 89%.
Однако квантовая механика – в частности, странное явление «запутанности» – позволяет Алисе и Бобу улучшить результат.
В квантовой механике свойства фундаментальных частиц, к примеру, электронов, не существуют до момента измерения. Представим, что электрон быстро движется по окружности. Чтобы определить его местонахождение, мы выполняем измерение. Но до измерения у электрона нет определённого местоположения. Он характеризуется математической формулой, выражающей вероятность обнаружения его в определённом месте.
Когда две частицы запутаны, сложные амплитуды вероятностей, описывающих их свойства, переплетаются. Представьте два электрона, запутанных так, что если измерение определяет местоположение одного из них на определённом месте окружности, то другой обязательно будет находиться в противоположной точке. Такое взаимоотношение двух электронов сохраняется, и когда они находятся рядом, и когда они разнесены на многие световые годы. Даже на таком расстоянии, если вы измерите местоположение одного электрона, местоположение другого станет известным сразу, даже без причинно-следственной связи между ними.
Это явление кажется абсурдным, поскольку в нашем не-квантовом опыте нет ничего, что говорило бы о подобной возможности. Альберт Эйнштейн высмеивал запутанность знаменитой фразой «пугающее дальнодействие», и годами утверждал, что такого быть не может.
Для реализации квантовой стратегии в игре с волшебным квадратом, Алиса и Боб берут по одной из запутанных частиц. Чтобы определить, какие числа записывать, они измеряют свойства своей частицы – примерно так же, как если бы они бросали связанные друг с другом кубики для выбора ответов.
Джон Стюарт Белл, придумавший нелокальные игры
Белл подсчитал, а множество последующих экспериментов продемонстрировало, что, используя странные квантовые корреляции частиц, игроки в подобных играх могут координировать свои ответы гораздо точнее, и выигрывать чаще, чем в 89% случаев.
Белл придумал нелокальные игры как способ доказать, что запутанность реальна, а наше классическое представление о мире неполно – а в то время такое заключение было легко сделать. «Белл придумал эксперимент, который можно провести в лаборатории», — сказал Клив. Если у нас получится зарегистрировать процент успеха, превышающий ожидаемый, станет ясно, что игроки используют какие-то особенности физического мира, не объясняемые классической физикой.
Проделанная Слофстрой и другими работа похожа по стратегии, но отличается по масштабу. Они показали, что игры Белла не только доказывают реальность запутанности, но некоторые из них могут доказать нечто большее – например, существование предела количества конфигураций, которые может принять Вселенная.
Ещё больше запутанности
В работе 2016 года Слофстра предложил новую нелокальную игру, в которую играют два игрока, дающие ответы на простые вопросы. Чтобы победить, им нужно давать ответы, определённым образом связанные друг с другом, как в игре с волшебным квадратом.
Представьте, допустим, игру для двоих игроков, Алисы и Боба, которым нужно сопоставить носки из своих комодов. Каждый игрок должен выбрать один носок, не зная о том, какой носок выбрал другой. Игроки не могут заранее договариваться о выборе. Если их носки оказываются из одной пары, они выигрывают.
Учитывая эту неопределённость, неизвестно, какие носки должны выбирать Алиса и Боб – по крайней мере, в классическом мире. Но если они смогут применить запутанные частицы, их шансы на составление пары увеличиваются. Основывая выбор цвета носка на результатах измерений одной пары запутанных частиц, они могут координировать и выбор этого одного атрибута носка.
Однако по поводу остальных атрибутов им всё равно придётся догадываться – шерстяной это носок или хлопковый, высотой до лодыжки или до середины икры. Но, используя дополнительные запутанные частицы, они могут получить доступ к большему количеству измерений. Они могут использовать один набор для корреляции выбора материала, другой – для выбора длины носка. В итоге, благодаря возможности координировать выбор многих атрибутов, они с большей вероятностью выберут носки из одной пары.
«Более сложные системы позволяют делать более согласованные измерения, что позволяет координировать действия при выполнении более сложных задач», — сказал Слофстра.
Но в игре Слофстры вопросы не относятся к носкам. Они относятся к таким уравнениям, как a + b + c и b + c + d. Алиса может назначить любой переменной значение 1 или 0 (и значение каждой переменной останется одинаковым для всех уравнений). В итоге её уравнения в сумме дадут определённую величину.
Бобу дают одну из переменных Алисы, например, b, и просят назначить ей значение 0 или 1. Игроки выигрывают, если оба назначат одно значение этой переменной.
Если бы вы играли в эту игру с другом, вы не могли бы постоянно выигрывать. Но с помощью пары запутанных частиц выигрыш стал бы более постоянным, как в примере с носками.
Слофстре было интересно понять, существует ли количество запутанных частиц, свыше которого вероятность команды выиграть перестаёт расти. Возможно, игроки могли бы выстроить оптимальную стратегию, имея на руках пять пар запутанных частиц, или 500 пар. «Мы надеялись, что сможем сказать: для оптимальной игры требуется вот столько запутанности, — сказал Слофстра. – Но оказалось, что это не так».
Он обнаружил, что добавление дополнительных запутанных частиц всегда увеличивает вероятность выигрыша. А если бы вы смогли использовать бесконечное количество запутанных частиц, вы бы смогли играть в эту игру идеально, выигрывая в 100% случаев. С носками так явно не получится – когда-нибудь все особенности носков закончатся. Но, как показала игра Слофстры, Вселенная может быть куда запутаннее, чем ящик с носками.
Бесконечна ли Вселенная?
Результат Слофстры шокировал учёных. Через одиннадцать дней после появления этой работы, специалист по информатике Скотт Ааронсон написал, что результат затрагивает «вопрос почти метафизической важности: а именно, какие эксперименты в принципе могут показать, является ли Вселенная дискретной или непрерывной?»
Ааронсон писал о различных состояниях, которые может принять Вселенная, где «состояние» – это определённая конфигурация всей её материи. У каждой физической системы есть пространство состояний, или список всех различных состояний, которые она может принять.
Уильям Слофстра, математик из университета Ватерлоо
Исследователи говорят об определённом количестве измерений у пространства состояний, отражающего количество независимых характеристик, которые можно настроить в системе. К примеру, пространство состояний есть даже у ящика с носками. Каждый носок можно описать цветом, длиной, материалом и изношенностью. Тогда у пространства состояний ящика с носками четыре измерения.
Сложный вопрос о физическом мире состоит в следующем: есть ли предел размеру пространства состояний Вселенной (или любой физической системы). Если предел есть, тогда неважно, насколько большой и сложной будет физическая система, сконфигурировать её можно будет только конечным количеством способов. «Вопрос в том, позволяет ли физика существовать физическим системам с бесконечным количеством свойств, независимых друг от друга, которые в принципе можно наблюдать», — сказал Томас Видик, специалист по информатике из Калифорнийского технологического института.
Пока что физики не определились с ответом. Более того, существуют две противоположных точки зрения.
С одной стороны, студентов на вводном курсе по квантовой механике учат думать в терминах пространств состояний с бесконечным количеством измерений. Моделируя местоположение электрона, движущегося по окружности, они назначают вероятность каждой точке окружности. Поскольку точек существует бесконечное количество, пространство состояний, описывающее местоположение электрона, будет иметь бесконечное количество измерений.
«Чтобы описать систему, нам нужен параметр для каждой возможной точки нахождения электрона, — сказал Юйэнь. – Точек бесконечно много, поэтому нам нужно бесконечно много параметров. Даже в одномерном пространстве (окружность) пространство состояний частицы имеет бесконечное количество измерений».
Но, возможно, идея о бесконечном пространстве измерений не имеет смысла. В 1970-х физики Якоб Бекенштейн и Стивен Хокинг подсчитали, что чёрная дыра является наиболее сложной физической системой во Вселенной, но даже и её состояние можно описать большим, но конечным количеством параметров – примерно 1069 бит информации на квадратный метр её горизонта событий. Это число, предел Бекенштейна, говорит о том, что если уж чёрной дыре не требуется пространство состояний с бесконечным количеством измерений, то и ничему другому оно тоже не нужно.
Эти соревнующиеся понятия о пространствах состояний отражают фундаментально различающиеся взгляды на природу физической реальности. Если пространства состояний имеют конечное число измерений, то на мельчайшем масштабе природа должна быть пикселизированной. Но если электронам требуются пространства состояний с бесконечным числом измерений, физическая реальность по сути своей непрерывна даже на мельчайшем разрешении.
Так что же верно? Физики пока не дали ответ, но игра Слофстры, в принципе, может его обеспечить. Работа Слофстры предлагает способ провести разграничение: сыграйте в игру, которую можно выиграть в 100%, только если Вселенная позволяет существовать пространствам состояний с бесконечным количеством измерений. Если игроки будут выигрывать каждый раз, это значит, что они будут пользовать преимуществом таких корреляций, которые могут возникнуть только при измерении физических систем с бесконечным количеством независимо настраиваемых параметров.
«Он предлагает такой эксперимент, что если его получится реализовать, то мы сможем сделать вывод, что система, дающая наблюдаемую статистику, должна иметь бесконечное количество степеней свободы», — сказал Видик.
Однако для реализации эксперимента Слофстры есть определённые препятствия. К примеру, невозможно доказать, что лабораторный эксперимент верен в 100% случаев. «В реальном мире вы ограничены свойствами экспериментальной установки, — сказал Юйэнь. – Как различить результаты в 100% и 99,9999%?»
Однако, оставляя в стороне практические тонкости, надо признать, что Слофстра доказал наличие, по крайней мере, математического способа оценки фундаментальной особенности Вселенной, которая в ином случае осталась бы за пределами нашего кругозора. Когда Белл придумал свои нелокальные игры, он надеялся, что они будут полезными для зондирования одного из самых заманчивых явлений Вселенной. Через пятьдесят лет его изобретение обнаружило ещё большую глубину.
Комментарии (27)
UncleAndy
02.05.2019 17:08+1«Если игроки будут выигрывать каждый раз»
На самом деле проблема в том, что «каждый раз» означает «в бесконечной игре». А на практике реализовать бесконечную игру не получится.
DjSapsan
02.05.2019 18:43+1Вопрос на засыпку. Представьте, что каждый атом в человеке зеркально отразили. Принцип симметрии говорит, что физически ничего не изменится. Вопрос такой: как на это отреагирует сознание? Заметит ли подвох? Как будет реагировать человек в том же окружении что и до отражения? Как будет реагировать человек в отраженном окружении?
AlekDikarev
02.05.2019 19:18Я конечно совсем не химик, но вроде Может возникнуть эффект, связанный с зеркальной изомерией, и наверное, заметит не только разум
DjSapsan
02.05.2019 19:20+1если про право- и левовращательные молекулы, то они как раз отлично отражаются
a5b
02.05.2019 19:58+1У "отраженного" организма будут большие проблемы с усвоением пищи, имеющей неправильную хиральность (в аминокислотах):
https://ru.wikipedia.org/wiki/Хиральность_(химия) — Хиральность в биологии
Многие биологически активные молекулы обладают хиральностью, причём природные аминокислоты и сахара представлены в природе преимущественно в виде одного из энантиомеров: аминокислоты, в основном, имеют l-конфигурацию, а сахара — d-конфигурацию[14].
Две энантиомерные формы одной молекулы обычно имеют различную биологическую активность. Это связано с тем, что рецепторы, ферменты, антитела и другие элементы организма также обладают хиральностью, и структурное несоответствие между этими элементами и хиральными молекулами препятствует их взаимодействию.https://en.wikipedia.org/wiki/Chirality_(chemistry)#In_biochemistry
https://www.wired.com/2010/11/ff_mirrorlife/Tzimie
02.05.2019 20:23Но если отразить всю планету, то еда усваиваться будет
Chaos_Optima
03.05.2019 13:08Да но недолго, зеркальные аминокислоты оч быстро уничтожаются под действием уф в отличии от обычных.
Tzimie
02.05.2019 19:36Зеркальная симметрия (Р) нарушена, и даже комбинированная CP тоже нарушена
DjSapsan
02.05.2019 20:29Хорошо, физически симметрия нарушена. А как изменится сознание? Если окружение тоже отразить, заметит ли это человек?
rombell
02.05.2019 21:07+1C и CP нарушения симметрии в обычной жизни вроде как не проявляются, так что нет оснований считать, что сознание что-то сможет заметить. Просто в силу отсутствия соответствующих датчиков.
pop70
03.05.2019 06:09«Запутанные частицы» наконец-то позволят физикам ответить на вопрос «сколько ангелов поместится на кончике иголки»…
phenik
03.05.2019 08:16С одной стороны, студентов на вводном курсе по квантовой механике учат думать в терминах пространств состояний с бесконечным количеством измерений. Моделируя местоположение электрона, движущегося по окружности, они назначают вероятность каждой точке окружности. Поскольку точек существует бесконечное количество, пространство состояний, описывающее местоположение электрона, будет иметь бесконечное количество измерений.
Все упирается в структурированность пространства-времени, наличия у нее зернистости. Пока эксперименты не обнаружили ее до уровня 10^?18 с во времени, и 10^?48 м в пространстве.Comod
03.05.2019 08:44Даже если и так, но так пространство и время относительны то и «зернистость» тоже будет относительной.
phenik
03.05.2019 11:07+1но так пространство и время относительны то и «зернистость» тоже будет относительной
В смысле теории относительности? Скорее всего это другой уровень реальности, из которого как раз и будет следовать принцип относительности. Если дискретность (квантованность?) этого уровня будет обнаружена, то она будет описываться более фундаментальной теорией, чем ТО. Это будет означать, что пр-временной континуум в физических теориях является отдельным физическим феномен, а не некой вспомогательной модельной конструкцией, обладающей свойствами непрерывности. Что-то вроде строительных лесов вокруг строения, кот. позволяют делать измерения элементов строения, и которые будут удалены, когда эти элементы станут самоописывающимися. Точнее эта конструкция будет появляться в этой новой теории, как предельный случай, когда квантовыми свойства этого уровня можно пренебречь. Например, когда этих квантов много и они будут определенным образом связаны, т.е. проявят некоторые кооперативные свойства. Возможно эта новая теория также прояснит свойства гравитационного взаимодействия на квантовом уровне.
Georgy9
03.05.2019 21:31Что значит «не обнаружили»? Физики пока и близко не могут подобраться к исследованию таких уровней материи. Это, скажем так, теоретический предел. Почему бы ему не оказаться и практическим? Но до него еще как
до Луныдо звезд.
Действительно, это самый главный вопрос, что в философии, что в физике, является ли бесконечность лишь математической абстракцией, придуманной для удобства вычислений, или реальным свойством нашей Вселенной. Пока что все мейнстримные теории, пытающиеся понять и объяснить физическую реальность, используют бесконечности, оставляя дискретность «маргиналам». А при нынешней грантовой системе в науке это тупик, который может быть преодолен только «туннелированием».phenik
04.05.2019 10:11Это, скажем так, теоретический предел. Почему бы ему не оказаться и практическим?
Нет, это достигнутый пока экспериментальный уровень проверки структурности пр-времени. Ничто не мешает ставить эксперименты и проводить наблюдения с более точной проверкой, кроме отсутствия финансирования, как вы и написали)Действительно, это самый главный вопрос, что в философии, что в физике, является ли бесконечность лишь математической абстракцией, придуманной для удобства вычислений, или реальным свойством нашей Вселенной.
Сама по себе реальность не конечна, не бесконечна, она существует, и мы можем строить все более точные ее модели. Непрерывность и бесконечность являются идеализациями наблюдаемых свойств реальности, кот. могут приводить при использовании в некоторых условиях к противоречивым результатам. Это показали еще древние греки в апориях Зенона. Но это недостаток (ограничение) мышления вообще, использующего процедуру абстрагирования, способность которой одарила нас эволюция. А дареному коню в зубы не смотрят) Нужно как-то обходить такие ограничения, и создавать более адекватные способы моделирования реальности.
stantum
03.05.2019 12:27+1Исправьте меня, пожалуйста, если неправ, но использование запутанных частиц для координации действий ничем не отличается от использования синхронизированных часов в макромире.
Например, если Алиса и Боб договорятся, что во время четных минут будут помещать ноль в центр строки, их можно разнести по разным континентам, и все еще они будут выигрывать в 100% случаев.
ThisMan
03.05.2019 13:16+1Я чего то не понял, как обычный физический мир ограничивает победу в игре с квадратами? Через теорию вероятностей? Тогда причём тут физика, кажется, что это больше «просто математика». И почему по условиям задачи игрокам нельзя общаться напрямую, но при этом они используют запутанные частицы в качестве «общения», разве это не обход правил?
phenik
03.05.2019 17:51И почему по условиям задачи игрокам нельзя общаться напрямую, но при этом они используют запутанные частицы в качестве «общения», разве это не обход правил?
По условиям это не локальная игра, в ней роль судьи из классического варианта игры возлагается на запутанные частицы.
rinaty
03.05.2019 14:49+1Я чет не понял, а как квантовая запутанность поможет в первой игре с магическими квадратами?
lamerok
03.05.2019 18:12-1Вот я могу квантовую запутанность на примере пары носков показать. Есть пара носков, один из носков дырявый, ложим их мешок, закрываем глаза, вытаскиваем один и ложим в другой мешок. Один мешок отдаем Бобу другой Алисе. Алису отправляем на Багамы, Боба в Магадан.
И потом спрашиваем у Алисы, какой носок у Боба… Пока она не вытащит носок из своего мешка, она с вероятностью 50 на 50 может сказать, какой у него носок. Но как только она измерит свой носок (вытащит его из мешка) она тут же скажет какой носок у Боба… Кстати Боб еще может не знать какой у него носок, а Алиса уже знает.Porohovnik
03.05.2019 19:21Ну вот! А говорят нет примера такого явления в реальности… а вот оно как...
AlekDikarev
03.05.2019 23:46+1Так ее пытался объяснить Эйнштейн, но там речь шла о перчатках. Однако, если я не ошибаюсь, опыт предложенный Беллом и проведенный Клаузером показал что это объяснение неверно.
we1
06.05.2019 06:30Там они от перчаток (а не носков) перешли к стюардессам, и доказали, что в квантовом мире нет понятия «положили с самого начала». Честно скажу, я не понял то доказательство, но мне и не надо.
irvinatkins
03.05.2019 21:31>>чтобы сумма чисел в ряду была нечётной
если эти условия для алисы и боба всегда будут неизменными, то решение простое,
алиса всегда пишет 1 0 0, боб смотрит в щависимости от того какой столбец ему заполнять.
crocodile2u
Осталось придумать запутанные частицы для рулетки, я считаю...