Интересно, а какая сторона у монетки в тот момент, когда она в воздухе? Орел или решка, горит или не горит, открытое или закрытое, 1 или 0. Все это примеры двоичной системы, то есть системы, которая имеет всего два возможных состояния. Все современные процессоры в своем фундаменте основаны именно на этом!

При правильной организации транзисторов и логических схем можно сделать практически все! Или все-таки нет?

Современные процессоры это произведение технологического искусства, за которым стоят многие десятки, а то и сотни лет фундаментальных исследований. И это одни из самых высокотехнологичных устройств в истории человечества! Мы о них уже не раз рассказывали, вспомните хотя бы процесс их создания!

Процессоры постоянно развиваются, мощности растут, количество данных увеличивается, современные дата-центры ворочают данные сотнями петабайт (10 в 15 степени = 1 000 000 000 000 000 байт). Но что если я скажу что на самом деле все наши компьютеры совсем не всесильны!

Например, если мы говорим о BigData (больших данных) то обычным компьютерам могут потребоваться года, а то и тысячи лет для того, чтобы обработать данные, рассчитать нужный вариант и выдать результат.


И тут на сцену выходят квантовые компьютеры. Но что такое квантовые компьютеры на самом деле? Чем они отличаются от обычных? Действительно ли они такие мощные? Будет ли на них CS:GO идти в 100 тысяч ФПС?

Небольшая затравочка — мы вам расскажем, как любой из вас может уже сегодня попробовать воспользоваться квантовым компьютером!

Устраивайтесь поудобнее, наливайте чай, будет интересно.

Глава 1. Чем плохи обычные компьютеры?


Начнем с очень простого классического примера.

Представим, что у вас есть самый мощный суперкомпьютер в мире. Это компьютер Фугаку. Его производительность составляет 415 ПетаФлопс.



Давайте дадим ему следующую задачку: надо распределить три человека в две машины такси. Сколько у нас есть вариантов? Нетрудно понять что таких вариантов 8, то есть это 2*2*2 или 2 в третьей степени.

Как быстро наш суперкомпьютер справится с этой задачей? Мгновенно! Задачка-то элементарная.

А теперь давайте возьмем 25 человек и рассадим их по двум шикарным лимузинам, получим 2 в 25 степени или 33 554 432 варианта. Поверьте, это число тоже плевое дело для нашего суперкомпьютера.

А теперь 100 человек и 2 автобуса, сколько вариантов?

Считаем: 2 в 100 степени — это примерно 1.27 x 1030 или 1,267,650,600,228,229,401,496,703,205,376 вариантов.

Теперь нашему суперкомпьютеру на перебор всех вариантов понадобится примерно 4.6*10^+35 (4.6 на 10 в 35 степени) лет. А это уже очень и очень много. Такой расчет займет больше времени чем суммарные жизни сотен вселенных.

Суммарные жизни нашей вселенной: 14 миллиардов лет или 14 на 10 в 9 степени.

Даже если мы объединим все компьютеры в мире ради решения, казалось бы, такой простой задачки как рассадка 100 человек по 2 автобусам — мы получим решение, практически никогда!

И что же? Все? Выхода нет?

Есть, ведь квантовые компьютеры будут способны решить эту задачку за секунды!

И уж поверьте — использоваться они будут совсем не для рассадки 100 человек по 2 автобусам!

Глава 2. Сравнение. Биты и Кубиты


Давайте разберемся, в чем же принципиальная разница.

Мы знаем, что классический процессор состоит из транзисторов и они могут пропускать или не пропускать ток, то есть быть в состоянии 1 или 0 — это и есть БИТ информации.  Кстати, рекомендую посмотреть наше видео о том как работают процессоры.



Вернемся к нашему примеру с двумя такси и тремя людьми. Каждый человек может быть либо в одной, либо в другой машине — 1 или 0.



Вот все состояния:


Для решения процессору надо пройти через абсолютно все варианты один за одним и выбрать те, которые подходят под заданные условия.

В квантовых компьютерах используются тоже биты, только квантовые и они принципиально отличаются от обычных транзисторов.

Они так и называются Quantum Bits, или Кубиты.

Что же такое кубиты?


Кубиты — это специальные квантовые объекты, настолько маленькие, что уже подчиняются законам квантового мира. Их главное свойство — они способны находится одновременно в 2 состояниях, то есть в особом состоянии — суперпозиции.



Фактически, это и есть принципиальное отличие кубитов от обычных битов, которые могут быть только 1 или 0.

Суперпозиция — это нечто потрясающее. Считайте что кубиты — это одновременно открытая и закрытая дверь, или горящая и не горящая лампочка….

В нашем случае они одновременно 1 и 0!

Но квантовая механика говорит нам, что квантовый объект, то есть кубит, находится в суперпозиции, пока ты его не измеришь. Помните монетку — это идеальный пример суперпозиции — пока она в воздухе она одновременно и орел, и решка, но как только я ее поймал — все: либо орел, либо решка! Состояние определилось.

Надо понять, что эти кубиты и их поведение выбираются совсем не случайно — эти квантовые системы очень строго определены и их поведение известно. Они подчиняются законам квантовой механики!

Квантовый компьютер внутри


Говоря о самом устройстве, если мы привыкли к полупроводникам и кремнию в обычных процессорах, то в случае квантовых компьютеров люди все еще ищут, какие именно квантовые объекты лучше всего использовать для того, чтобы они выступили кубитами. Сейчас вариантов очень много — это могут быть и электроны со своим спином или, например, фотоны и их поляризация. Вариантов множество.

И это далеко не единственная сложность, с которой столкнулись ученые! Дело в том, что квантовые кубиты довольно нестабильны и их надо держать в холодном месте, чтобы можно было контролировать.

И если вы думаете, что для этого будет достаточно водяного охлаждения вашего системника, отчасти вы правы, только если залить туда жидкий Гелий, температура которого ниже минус двухсот семидесяти градусов Цельсия! А для его получения используются вот такие вот здоровые бочки.



Фактически, квантовые компьютеры — это одни из самых холодных мест во вселенной!

Принцип работы квантового компьютера


Давайте вернемся к нашей задачке про трех людей и две машины и рассмотрим ее с точки зрения квантового компьютера:

Для решения подобной системы нам понадобится компьютер с 3 кубитами.

Помните, что классический компьютер должен был пройти все варианты один за одним? Так вот поскольку кубиты одновременно имеют состояния «1» и «0», то и пройти через все варианты он сможет, фактически одновременно!

Знаю, что прозвучит максимально странно, но представьте, что в данной ситуации наши три кубита создают 8 различных параллельных миров, в каждом из которых существует одно решение, а потом они все собираются в один! Реально «Мстители» какие-то!

Но что же получается? Он выдает все варианты сразу, а как получить правильный?



Для этого существуют специальные математические операторы, например оператор Грувера, который позволяет нам определять правильные результаты вычислений квантовых систем! Это специальная функция, которая среди всех возможных вариантов находит нужный нам.

Помните задачку про 100 человек в 2 автобуса, которую не смогли бы решить все современные компьютеры вместе взятые? Для квантового компьютера со 100 кубитами эта задачка все равно что семечку щелкнуть! То есть компьютер находится одновременно в 2 в 100 степени состояний, а именно:

1,267,650,600,228,229,401,496,703,205,376 — вот столько состояний одновременно! Столько параллельных миров!

Думаете, что всё это звучит слишком хорошо, чтобы быть правдой? Да, вы правы. Есть куча нюансов и ограничений. Например, ошибка. Проблема в том, что кубиты, в отличие от обычных битов, не определены строго.

У них есть определенная вероятность нахождения в состоянии 1 или 0. Поэтому есть вероятность ошибки и чем больше кубитов в системе, тем больше суммарная вероятность, что система выдаст неправильный ответ. Поэтому зачастую надо провести несколько расчетов одной и той же задачи, чтобы получить верный ответ.

Ну то есть как верный? Он всегда будет содержать в себе минимальную возможность ошибки вследствие своей сложной квантовой природы, но ее можно сделать ничтожно малой, просто прогнав вычисления множество раз!

Квантовые компьютеры сегодня


Теперь перейдем к самому интересному — какое состояние сейчас у квантового компьютера? А то их пока как-то не наблюдается на полках магазинов!



На самом деле все, что я описал выше, это не такая уж и фантастика. Квантовые компьютеры уже среди нас и уже работают. Их разработкой занимаются GOOGLE, IBM, INTEL, MICROSOFT и другие компании поменьше. Кроме того в каждом большом институте есть исследовательские группы, которые занимаются разработкой и исследованием квантовых компьютеров.

[caption id=«attachment_148510» align=«aligncenter» width=«640»]Сундар Пичаи и Дэниэл Сэнк с квантовым компьютером Google. Октябрь 2019[/caption]

В октябре прошлого года, в журнале Nature, Google выложила статью, которая шарахнула по всему миру огромными заголовками — КВАНТОВОЕ ПРЕВОСХОДСТВО!

В Google создали квантовый компьютер с 53 кубитами и смогли решить задачку, за 200 секунд, на решение которой у обычного компьютера ушло бы 10000 лет!

Конечно IBM было очень обидно и они начали говорить, что задача слишком специальная, и вообще не 10000 лет, а 2.5 дня, но факт остается фактом — квантовое превосходство было достигнуто в определенной степени!



Так что теперь вопрос считанных лет, когда квантовые компьютеры начнут использоваться повсеместно! IBM, например, только что анонсировали что в 2023 году создадут коммерческий квантовый компьютер с 1121 кубитами!

Чтобы вы понимали калькулятор Google даже не считает сколько будет 2 в 1121 степени, а просто говорит — бесконечность! И это совсем не предел.



Уже ведется разработка компьютеров на миллионы кубитов — именно они откроют истинный потенциал квантовых вычислений.

Более того, вы уже сейчас можете попробовать самостоятельно попробовать квантовые вычисления! IBM предлагает облачный доступ к самым современным квантовым компьютерам. Вы можете изучать, разрабатывать и запускать программы с помощью IBM Quantum Experience.

Но зачем вообще нужны квантовые компьютеры и где они будут применяться?


Естественно, не для распихивания людей по автобусам.

Задач множество. Главная — базы данных и поиск по ним, работа с BigData станет невероятно быстрой. Shazam, прокладывание маршрутов, нейронные сети, искусственный интеллект — все это получит невероятный толчок! Кроме того симуляции и моделирование квантовых систем! Зачем это надо — спросите вы?

Это очень важно, так как появится возможность строить модели взаимодействия сложных белковых соединений.



Это станет очень важным шагом для медицины, открывающим просто умопомрачительные просторы для создания будущих лекарств, понимания того как на нас влияют разные вирусы и так далее. Простор огромен!

Чтобы вы примерно понимали какая это сложная задачка, мы вернемся в примеру с монеткой. Представьте что вам надо заранее смоделировать что выпадет — орел или решка.

Надо учесть силу броска, плотность воздуха, температуру и кучу других факторов. Сложно? Ну не так уж!

А теперь представьте, что у вас не один человек, который кидает монетку, а миллион разных людей, в разных местах, по-разному кидают монетки. И вам надо рассчитать что выпадет у всех! Вот примерно настолько сложная эта модель о взаимодействии белков.

Кроме того, вы наверняка слышали о том, что квантовые компьютеры сделают наши пароли просто пшиком, который можно будет подобрать за секунды. Но это уже совсем другая тема…

Вывод




Какой вывод из всего этого мы можем сделать, квантовый компьютер — это принципиально новая система. Она отличается от обычных компьютеров в самом фундаменте, в физических основах на которых работает.

Их на самом деле даже нельзя сравнивать! Это все равно, что сравнивать обычные счеты и современные компьютеры!



И конечно есть большие сомнения, что вы когда-нибудь сможете прийти в магазин и купить свой маленький квантовый процессор. Но они вам и не нужны. Квантовые компьютеры для обычного пользователя станут как современные дата-центры, то есть нашими невидимыми помощниками, которые расположены далеко и которые просто делают нашу жизнь лучше или как минимум другой!