В одном из прошлых постов мы выяснили , что в обозримой перспективе себестоимость производства водорода снизится настолько, что этот газ станет конкурентоспособным энергоносителем на транспорте и в энергетике. Но есть ещё одна потенциальная проблема водородной экономики: хранить, транспортировать и поставлять H2 не так просто, как кажется. В этот раз мы расскажем, какие технологии решат эти задач и не «съедят» ли транспортные издержки прибыль будущих водородных магнатов.
В 1870 году Джон Рокфеллер создал в составе зарождавшегося нефтяного концерна Standard Oil бондарные мастерские. Нефтяной бум в США разразился так внезапно, что в ход пошли бочки из-под рыбы и виски объёмом в 42 галлона (почти 159 литров) — те самые баррели. Это было идеальное решение, так как они были подъёмными для грузчиков и подходящего размера для тогдашнего транспорта. Однако цена самого деревянного барреля выросла из-за бума до $3,0 при средней цене на нефть в США в 1870 году $3,86 (примерно $60 сегодня).
Поэтому Рокфеллер справедливо решил, что лучше делать бочки самому, открыл бондарные мастерские в Standard Oil и снизил цену барреля до $1,5 . Какой мы делаем вывод из этой истории? Удельная стоимость массового сырьевого товара почти всегда низкая, поэтому в конечной цене всегда большую роль играют издержки на хранение, преобразованию и поставку. Водород — более капризный груз, чем нефть и природный газ. У него низкая плотность, поэтому, чтобы сохранять экономически значимое количество, бочками не обойтись.
Один килограмм водорода при атмосферном давлении и комнатной температуре занимает 11,2 куб. м. Для сравнения: полный бак водородной Toyota Mirai — 4,7 кг водорода . И хотя сейчас 85% водорода идёт в дело там же, где он производится (нефтепереработка и производство удобрений), чем больше водородомобилей будет ездить по миру, тем острее станет необходимость «порционной» поставки H2 миллионам потребителей. Об это мы расскажем дальше, но сначала разберёмся, где хранить водород.
Где и как хранить водород
По мере превращения водорода из промышленного в потребительский товар — им будут заправлять машины, питать электросистему и отопление домов — его нужно будет запасать в больших количествах. Это нужно будет и для того, чтобы цены на водород не скакали. Причём газ будет храниться долго, поэтому не столько важна скорость закачки/откачки и расположение, сколько объём хранилищ.
Такую технологию давно придумали: много газа можно закачать в пещеры. Сейчас водород закачивают в основном в соляные пещеры — них он почти не загрязняется примесями, а нормированная стоимость хранения — до $0,6 за кг.
Второй естественный резервуар для водорода — истощённые пласты залежей природного газа или нефти и водоносные горизонты. Они больше соляных пещер, но водород в них сильнее загрязняется, вступая в реакцию с горной породой, микробами, жидкостями. В такие пещеры водород пока не закачивают, поэтому считать «экономику» рано.
Однако для краткосрочного и мелкомасштабного хранения водорода такие «пещеры горного короля» не подходят — нужны баки. В резервуарах хранят сжатый или сжиженный водород, который можно быстро закачать или откачать в нужных объёмах.
Сжатый водород (при давлении 700 бар, т. е. приблизительно 690 атм.) имеет только 15% плотности энергии (количество энергии на единицу объёма) бензина, и чтобы хранить эквивалентное количество топлива, скажем, на водородной заправке, нужно в семь раз больше места.
Поэтому водород скорее всего будут мешать с аммиаком, у которого плотность больше, а места такой смеси требуется меньше, что позволит транспортировать больше водорода без увеличения объёма хранилища. Правда, придётся потратиться на конверсию и реконверсию смеси.
В каком виде транспортировать водород
Проблема подготовки водорода для транспортировки решается по-разному: H2 сжимают, сжижают, смешивают с другими веществами. У каждого из этих вариантов свои преимущества и недостатки, а оптимальное решение зависит от географии поставок, расстояния, объёма и вида водорода для потребителя.
В любом агрегатном состоянии (кроме твёрдого, конечно) водород можно пустить по имеющимся газовым трубам, что однозначно дешевле, чем строить новую инфраструктуру. Первый кандидат — газовые сети. В мире насчитывается 3 млн километров газопроводов и 400 млрд кубометров подземных хранилищ метана. Но с этим есть технические проблемы:
у водорода низкая плотность энергии, и объёмы (или время) его поставки через газопровод придётся увеличить;
водород очень горюч на воздухе, поэтому чтобы снизить риски, придётся менять оборудование по всей цепочке поставок;
не всякая инфраструктура для, например, метана подойдёт водороду; особенно это касается потребительских котлов, бойлеров и т. п. (об этом подробнее ниже);
потребителям нужен разный газ (одним только чистый водород, другим — смесь), а технологии выделения чистого водорода из полученной смеси повысят конечную стоимость газа на $0,3-0,4 за кг.
В итоге наряду с газообразным водородом нам придётся производить его сжиженные и смешанные версии.
Как и природный газ, водород сжижается. Но проблема в том, что для этого H2 нужно охладить до -253 °C . Если представить, что для охлаждения используется часть самой поставки H2, то на сжижение уйдёт 25-35% её массы.
Такая же операция над природным газом требует только 10% массы. Есть и другой вариант: водород смешивается с другими веществами для перевозки в жидком виде. Главные претенденты на роль «попутчиков» H2 — упомянутый выше аммиак и жидкие органические носители водорода (Liquid Organic Hydrogen Carrier, LOHC), к примеру, метилциклогексан (C7H14). Чтобы смешать водород с аммиаком, нужно 7-18% энергии из объёма поставки. Столько же водорода теряется, когда он выделяется из этой смеси. Но аммиак сжижается при температуре -33 °C и содержит в 1,7 раза больше водорода на кубометр, поэтому аммиачно-водородную смесь транспортировать дешевле, чем чистый водород.
Схожим образом водород можно включить в жидкий органический носитель. На конверсию и реконверсию при этом уйдёт 35-40% водорода, хотя объёмы поставок эти издержки покрывают.
Некоторые жидкие органические носители водорода могут быть негорючими, что делает перевозку безопаснее. Источник: Hydrogenious LOHC Technologies / YouTube
Как доставлять водород
Как и углеводороды сейчас, водород перемещать по миру в основном будут трубы, суда и автоцистерны. Отправлять H2 поездами в целом будет дороже, хотя удалённым потребителям в локациях без трубопровода это возможно. В мире сегодня существует много водородопроводов, но в основном они не выходят за пределы технологических площадок химических и нефтеперерабатывающих заводов. Поэтому более оптимальный вариант — трубы для передачи природного газа.
Однако далеко не все они подходят для прокачки водорода из-за типа стали: трубы из низкопрочной стали будут портиться из-за контакта с водородом (водородное охрупчивание) и давления прокачки. При этом их пропускная способность должна быть в три раза выше из-за низкой плотности водорода. Последнее решается, как мы уже выяснили, смешиванием водорода с жидкостями, и для таких соединений также есть трубопроводы. В частности, трубы используют для прокачки аммиачно-водородной смеси. Один из аммиакопроводов, к примеру, идёт из Тольятти (Россия) до Одессы (Украина) (2,4 тыс. км).
В целом трубы — перспективно самый дешёвый вариант доставки. Себестоимость транспортировки 1 кг водорода в виде газа на расстояние около 1,5 тыс. км составит $1,0. Если пустить по трубам жидкую смесь, то с учётом конверсии и реконверсии она вырастет до $1,5 за кг. Если расстояние увеличивается, то повышается и цена (нужно больше компрессорных станций), поэтому на расстоянии 2,5 тыс. км водород из трубы обойдётся уже в $2,0 за кг.
Однако трубопровод подойдёт не для всех потребителей. В некоторые страны H2 доставят морем. Пока танкеры для перевозки водорода массово не производят. Первое такое судно, получившее название Suiso Frontier, построила компания Kawasaki Heavy Industries, а спустили его на воду в декабре 2019 года в Кобе (Япония). В марте 2020 года на танкер установили резервуар объёмом 1 250 куб. м, в котором водород будут перевозить в сжиженном состоянии.
Водородовоз Suiso Frontier построен в рамках проекта создания безуглеродной цепи поставок водорода из Австралии в Японию. Правда, сам танкер работает на дизельном двигателе , так что безуглеродной цепь не получается. Kawasaki Group Channel / YouTube
В других проектах предполагаются танкеры, схожие по размеру с судами для СПГ, которые в качестве топлива будут сжигать в день примерно 0,2% от перевозимого водорода. Более перспективны в этом отношении танкеры, которые сейчас перевозят сжиженный нефтяной газ (СНГ). В их резервуары можно залить аммиачную и другие подобные смеси водорода. Газовозами доставлять водород дороже, чем по трубопроводам.
Самый затратный способ — везти сжиженный водород на расстояние около 1,5 тыс. км: с учетом расходов на сжижение перевозка встанет в порядка $2,0 за кг, в аммиачной смеси — $1,2, с жидкими органическими носителями — $0,6 за кг. Правда, в отличие от расходов прокачки по трубам, себестоимость морской транспортировки слабо растёт при увеличении расстояния. Альтернатива — автомобильные перевозки. Уже сегодня водород возят в основном тягачи с прицепом или автоцистерны. В первом случае прицеп загружают резервуаром со сжатым водородом.
Правда, обычно перевозят таким способом в пределах 300 км: дальше становится невыгодно. Развитие автоперевозок водорода будет зависеть от вместимости баков. Теоретически один прицеп со сжатым газообразным водородом может вместить до 1 100 кг в лёгких композитных цилиндрах (под давлением 500 бар). Однако этот показатель редко достигается на практике, поскольку правила во всем мире ограничивают допустимое давление, высоту, ширину и вес цистерн.
Второй вариант — автоцистерны со сжиженным водородом, если есть постоянные потребители и объёмы поставки компенсируют расходы на сжижение.
Изолированные криогенные автоцистерны могут перевозить до 4 000 кг сжиженного водорода. Их применяют на расстояниях до 4 000 км. Дальше — нельзя: водород нагревается, из-за чего растёт давление. На расстояние до 500 км поставка водорода с жидким органическим носителем (с учётом конверсии) обойдётся в $2,9 за кг. Аммиачная смесь водорода при таких же условиях доедет до потребителя в среднем за $1,5 за кг.
Как видно, экономика автоперевозок зависит от объёма поставок: чем больше требуется водорода, тем более выгодно построить трубопровод. Чем меньше и чем ближе потребитель, тем выгоднее возить водород грузовиками
Итого: сколько стоят путешествия водорода
Прежде чем подвести предварительный итог напомним, во сколько обойдётся производство «зелёного» водорода и при какой цене он станет конкурентоспособным относительно традиционных энергоносителей.
В самых перспективных регионах добычи, откуда будут экспортировать экологически чистый водород (Ближний Восток, Северная и Южная Африка, Индия, Китай, Австралия, Патагония, Мексика, Юго-Запад США), он будет стоит $1,6–3,0 за кг (стоимость производства).
По подсчётам Международного энергетического агентства, наиболее выгодный вариант сухопутной поставки водорода на расстояния до 3,5 тыс. км. — это водород в газообразном состоянии через трубопровод (около $5,5 за кг ; здесь и далее стоимость транспортировки). На больших расстояниях по трубопроводам уже лучше пускать водородно-аммиачную смесь, что обойдётся в $6 за кг (до 5 тыс. км).
Морские поставки от расстояний зависят не так сильно, как от технологии. Дешевле всего перевозить смесь с аммиаком и органическими жидкими носителями (порядка $4,0–4,5 за кг). Дороже отправлять морем сжиженный водород (от $5,5 до $6,0 за кг).
При этом, по данным Совета по водородной энергетике, нижняя граница конкурентоспособности водорода для грузовиков, автобусов (для дальних перевозок) и электричек составит $4-5 за кг; для отопления и электропитания жилых домов — $3-5 за кг.; для автопогрузчиков — $7-9 за кг.
Но для частных и коммерческих городских перевозок водород останется дорогим, тем более с учётом доставки (нужно, чтобы он был не дороже $1,0-1,5). Однако вариативность подсчётов очень широкая, и для каждого региона и потребителя экономика водородных поставок будет своя.
Более того, мы в Toshiba знаем, как включить в цепь добавленной водородной стоимости новые технологии, которые позволят снизить транспортные издержки.
Как построить водородную цепь добавленной стоимости
Вырисовывается такая картина: в густонаселенных районах Европы и США водород от большого числа местных поставщиков для небольших потребителей в основном будут возить грузовики. Крупные потребители будут получать водород либо по трубопроводам от дальних поставщиков, либо импортировать морем из соседних стран (Латинская Америка для США и Северная Африка с Ближним Востоком — для Европы).
Японии будет сложнее: местный водород будет сравнительно дорогим, поэтому для крупных потребителей возможны поставки морем из стран ближнего и дальнего зарубежья. Правда, водородная энергетика всё-таки будет «демократичнее» углеводородной благодаря доступности возобновляемых источников энергии большому числу потребителей.
Именно на этой основе мы строим водородную цепь добавленной стоимости Toshiba (Toshiba Hydrogen Value Chain). Для крупных потребителей водород могут производить большие солнечные электростанции, наподобие той, что мы построили в Фукусиме . В день она вырабатывает газа на заправку 560 водородных авто и 150 домовладений. Часть водорода отправится грузовиками, часть — по трубам.
В последнем случае конвертировать полученный водород поможет наш генератор на топливных элементах H2Rex, который уже производит электричество и тепло из водорода и воздуха, к примеру, для гостиницы в Кавасаки. Небольшим и удалённым от производства H2 потребителям подойдут мини-электростанции типа нашей H2One. Она вырабатывает водород методом электролиза из воды, который поддерживается встроенной солнечной батареей.
Мы убеждены, что интеграция таких источников и преобразователей энергии в сочетании со строительством водородных электростанций на ВИЭ позволит снизить зависимость потребителей от зарубежных поставок H2, которые могут оказаться для них дорогими.
одно
Hlad
Удельная теплота сгорания водорода — 141 МДж/кг. Это почти 40 кВт*ч/кг. При стоимости транспортировки в 5 баксов за килограмм, мы, получаем 12.5 центов только за транспортировку одного кВт*ч энергии, без учёта затрат на добычу, и прочие потери.
Для сравнения: в литре бензина примерно 8.2 кВт*ч энергии. Купив за 50 рублей литр бензина на заправке — мы заплатим примерно по 8 центов за кВт*ч энергии вместе с добычей, доставкой, неимоверной кучей акцизов, сидящих в цене, и т.д.
Воткнув розетку в электросеть, мы получаем электричество примерно по 5 центов за кВт*ч. Тоже, вместе с добычей и всем остальным. И это электричество вполне может быть абсолютно чистым экологически.
Кубометр метана — чуть больше 9 кВт*ч. Чтобы водород стал выгоднее метана, метан должен стоить больше 1200 долларов за тысячу кубометров. Напомню, что себестоимость добычи водорода мы считаем равной нулю. И так далее. Так что перспективы у водорода, как топлива, весьма и весьма туманные, по крайней мере, в настоящее время.
Bedal
добавлю: не указаны потери водорода, а они неизбежны и довольно велики. Просачивается, сволочь, сквозь что угодно. К пожароопасности это добавляет, кстати, немало.
Причём, если у аккумуляторных технологий развитие с существенным улучшением параметров очевидно, то у водородных - нет. Особо лучше не будет, всё упирается в физику и базовую химию. Топливные ячейки на метаноле решили бы проблему избавлением от водородных кошмаров - но вот уже сколько десятилетий они никак из лабораторий не выберутся.
saege5b
А перевозка жидкого водорода в замкнутой системе — уже не смущает?
меня ещё смущает, что у ТС вопрос куда потом девать использованный балласт, как-то тихо обходится стороной.
Mesklin
Вот, вот. Лучше бы занялись выведением производительного штамма водорослей или там бактерий каких для производства биотоплива. По мне, это гораздо реалистичнее путь для достижения пресловутой углеродной нейтральности.
sergio_nsk
Если учесть к.п.д. бензинового двигателя в лучшем случае 1/3, то цена 1 полезного кВт•ч обходится в 15 центов, что делает бензин не таким уж дешёвым в сравнении с альтернативами и тем более электричеством.
Hlad
Почему КПД водородного двигателя должен быть принципиально выше, чем бензинового? К тому же в бензине значительную часть цены составляют налоги и акцизы.
sergio_nsk
Разве идёт речь о двигателях внутреннего сгорания водорода, а не топливных элементах? У топливных элементов к.п.д. почти в два раза выше к.п.д. бензинового двигателя.
Hlad
Судя по подписи к картинкам — как раз о ДВС
Sergey-Aleksandrovich
Вы исходите из предположения, что цена бензина/нефти не изменится. А она (цена) будет рости. Но в целом — согласен, перспективы пока не радужные.
Мне, почему-то, кажется, что наименьшие издержки при транспортировке у электричества. Даёшь аналог ГОЭЛРО в планетарном масштабе! )
Добавлю что недавно по теме смотрел: youtu.be/2rUdB1so4Kc
GeorgKDeft
Не факт. Тут ссылка на исследование которое в теории позволяет транспортировать водород по всему миру используя стратосферные течения воздуха (как летал Конюхов на своем шаре). Думал даже статью давно об этом написать но много переводить и адаптировать и… не осилил(.
Sergey-Aleksandrovich
благодарю, ознакомился: на первый взгляд выглядит нежизнеспособно/фантастически. В самом начале автор в принципе сомневается в перспективах водорода как топлива.
… ну и если стратосферные течения так перспективны, почему их не используют в текущей логистике?
Попробую сформулировать свою мысль иначе: стоимость транспортировки «единицы энергии» (на мой скромный взгляд) ниже всего у електричества. Если задача стоит снизить транспортные издержки, то электричество — хорошее решение. Не «рассеивать» по ландшафту генерацию, а покрывать ландшафт сетями доставки энергии (а не «горючего»).
GeorgKDeft
Строительство стратосферных дирижаблей очень не дешевое дело, а значит экономически должно быть оправданно. Глобально проблема в водороде, но опять же я хотел связать эту статью с своей статьей о гидроэнергетике. А тут нужны именно дирижабли большой грузоподъемности. Думаю пока серьезных проблем из за климата не будет, как и массового переселения с прибрежных территорий городов о стратосферных перевозках никто говорить не будет. К тому же водород в данном случае это и чистая вода, а этот ресурс при переселении (потопе) не менее важен чем энергия. Опять же электросети хороши, если стабильны и не подвержены поломкам из за погоды. Предсказать ураганы, оползни и т.д. в будущем будет сложнее и как результат доставка может подорожать. Забавно но спустя столько лет в войне токов может выиграть Эдисон так как его концепция выработки энергии рядом с местом потребления может оказаться выгоднее передачи на большие расстояния, а замена на постоянный ток в этом случае выгоднее потерь на преобразование.
Sergey-Aleksandrovich
Опыт прошедшего столетия указывает, что нет никаких если — электросети хороши
Все это маловероятные обстоятельства непреодолимой силы
Смею предположить, что профильные специалисты в данных областях с вами не согласятся. В любом случае, восстановление линий электропередачи выглядит проще и дешевле, чем востановление предприятий электрогенерации