Статьи из цикла:
Введение
Задача этой статьи — помочь вам быстро познакомиться с основными принципами работы квантовых вентилей и понять, как эти вентили объединяются в цепи, наглядно представляющие квантовые алгоритмы (некоторые из них мы обсудим в последующих публикациях).
Для вашего удобства я опубликую сводную информацию обо всех важнейших вентилях, элементах схем и т. п. из статей этой серии в виде шпаргалки (чтобы вам не пришлось долго искать нужные сведения). В моих будущих статьях она будет называться «Квантовые вычисления: краткая справка».
Основы: квантовые состояния
Начнем с основ — с обозначений некоторых распространенных квантовых состояний, которыми мы будем впоследствии манипулировать:
Все они являются чистыми однокубитными состояниями, поэтому их можно представить в виде точек на сфере Блоха:
Теперь — четыре состояния Белла (их еще называют парами ЭПР, в честь Эйнштейна, Подольского и Розена — именно они являются авторами идей, которые впоследствии развил Белл). Это простейшие примеры квантовой запутанности двух кубитов:
И наконец, мы будем использовать так называемые состояния ГХЦ (Гринберга — Хорна — Цайлингера). Вот их общая форма (для n кубитов) и простейшая форма (для трех кубитов):
Состояния Белла и состояния ГХЦ очень важны, потому что их поведение кардинально отличается от предсказаний классической теории из-за уровня запутанности в таких системах (этот принцип «максимальной запутанности» будет рассмотрен в одной из последующих публикаций).
Основы: радианы
Углы поворота в теории квантовых вычислений измеряются в радианах. Полная окружность (360°) соответствует 2? радиан. Углы измеряются против часовой стрелки. Ниже показаны величины важнейших углов в градусах и в радианах.
Основы: диаграммы квантовых цепей
Перед тем как углубляться в изучение квантовых вентилей, следует изучить основы построения диаграмм квантовых цепей (это не займет много времени):
- Время на квантовой диаграмме движется слева направо.
- Каждому кубиту соответствует одиночная горизонтальная линия.
- Вентили обычно обозначаются квадратами. Тип вентиля обозначается буквами или другими символами в этом квадрате (бывают и исключения из этого правила. Обычно это кубитные вентили, у которых есть классические аналоги (пример — вентиль NOT)).
- Некоторым вентилям может соответствовать несколько элементов диаграммы (пример — вентиль NOT).
- В результате измерения кубита все суперпозиции коллапсируют, квантовые свойства кубита исчезают, и он превращается в обычный бит. Поэтому можно считать, что измерительный элемент (показанный ниже) принимает на вход кубит и выдает классический бит. Этой операции в языке Q# соответствует команда Measure(bases: Pauli[], qubits: Qubit[]) или M(qubit: Qubit) по основанию Z.
Вот обозначения важнейших элементов:
Более подробная информация приводится в документации здесь и в книге М. Нильсена и И. Чанг «Квантовая информация и квантовые вычисления».
Однокубитные вентили
Однокубитные вентили закономерно являются самыми простыми, поэтому мы начнем с них. Операцию, выполняемую любым однокубитным вентилем, можно представить как поворот вектора, характеризующего состояние кубита, в другую точку сферы Блоха (см. ниже).
Самые элементарные однокубитные вентили — это вентили Паули X, Y и Z:
Названия | Матричное представление | Обозначения | Представление в Q# |
---|---|---|---|
Вентиль Паули X, X, NOT, переключение бита, | X(qubit: Qubit) | ||
Вентиль Паули Y, Y, | Y(qubit: Qubit) | ||
Вентиль Паули Z, Z, переключение фазы, | Z(qubit: Qubit) |
Вентиль Y ожидаемо соответствует повороту вектора вокруг оси y на ? радиан. В результате такой операции вектор |0? превращается в i|1?, а |1? — в -i|0?.
Вентиль Z представляет собой особый случай вентиля фазового сдвига (см. ниже) при фи = ? = 180°. Он соответствует повороту вектора вокруг оси z на ? радиан. Вектор |0? он оставляет без изменений, а |1? преобразует в -|1?.
Ниже работа этих преобразований проиллюстрирована с помощью сферы Блоха (ось вращения в каждом случае выделена красным; на картинку можно нажать, чтобы увеличить ее):
Важно отметить, что после двукратного применения одного и того же вентиля Паули к кубиту он перейдет в исходное состояние (потому что после поворота вектора на 2? радиан или 360° вокруг любой оси он перейдет в начальное положение). Как следствие,
Поскольку и т. д.,
Здесь II — обозначение единичной матрицы: . Единичной называется матрица, результат умножения которой на произвольную матрицу M (II) равен матрице M: MII = IIM = M. Единичная матрица соответствует квантовой операции, которая не меняет квантовое состояние. На сфере Блоха это выглядит так:
Ввиду этого отношения говорят, что матрица Паули в квадрате равна единичной матрице.
Ниже приводится описание еще нескольких важных однокубитных вентилей.
Названия | Матричное представление | Обозначения | Представление в Q# |
---|---|---|---|
Вентиль Адамара, H | H(qubit: Qubit) | ||
Фазовый сдвиг, | R1(theta: Double, qubit: Qubit) В более общем случае R(pauli: Pauli, theta: Double, qubit: Qubit) |
||
Фазовый сдвиг,, S | S(qubit: Qubit) | ||
, T | T(qubit: Qubit) |
Вентиль фазового перехода представляет достаточно общую операцию, у которой есть множество полезных применений. Самые распространенные его вариации — вентили сдвига фазы на ?/4, ?/8 и Паули-вентиль Z, для которых параметр фи равен ?/2, ?/4 и ? соответственно. Пример фазового сдвига на сфере Блоха:
Многокубитные вентили
Многокубитные вентили выполняют операции над двумя или более кубитами. Один из простейших примеров — вентиль SWAP:
Названия | Матричное представление | Обозначения | Представление в Q# |
---|---|---|---|
SWAP | SWAP(qubit1: Qubit, qubit2: Qubit) |
Еще один класс многокубитных вентилей — так называемые управляемые вентили. На вход любого управляемого вентиля подается по меньшей мере один управляющий и один управляемый кубит, причем вентиль выполнит операцию над управляемым кубитом только в том случае, если управляющий кубит находится в определенном состоянии.
Вентили, которые выполняют операцию при управляющем кубите |1?, обозначаются заполненным кругом на проводе управляющего кубита. Вентили, которые выполняют операцию при управляющем кубите, равном |0?, обозначаются пустой окружностью, как показано ниже.
Для того чтобы составить матрицу любого управляющего вентиля, нужно дописать единичную матрицу в левом верхнем углу матрицы нужного вентиля, а все остальные ячейки заполнить нулями. Вот пример:
Обычные вентили в Q# можно преобразовать в управляющие с помощью ключевого слова Controlled, как описано здесь (в разделе «Controlled» в самом низу страницы). Например, вентиль CNOT (напомним, что вентиль NOT эквивалентен X-вентилю Паули) можно получить командой
(Controlled X)([control], (target))
где [control] — массив входных управляющих кубитов.
Ниже описаны другие распространенные управляемые вентили (мы выделили единичную матрицу красным, а матрицу исходного вентиля — синим, как выше):
Названия | Матричное представление | Обозначения | Представление в Q# |
---|---|---|---|
CNOT | CNOT(control: Qubit, target: Qubit) или (Controlled X)([control], (target)); |
||
CCNOT, вентиль Тоффоли | CCNOT(control1: Qubit, control2: Qubit, target: Qubit) или (Controlled X)([control1; control2], target); |
||
CSWAP, вентиль Фредкина | (Controlled SWAP)([control], (target)); |
Универсальные наборы
Как мы уже упоминали в предыдущей публикации, вне зависимости от того, с помощью какой физической системы мы имитируем квантовый компьютер, должна иметься возможность реализовать «универсальный набор» вентилей. Это значит, что любая допустимая вычислительная операция в нашей системе должна быть преобразуема к конечной последовательности известных вентилей. Вот пример такого универсального набора: вентиль Адамара, вентиль фазового сдвига, вентиль CNOT и вентиль ??8.
Свойство универсальности гораздо интереснее, чем может показаться на первый взгляд. Если в квантовом компьютере существует универсальный набор вентилей, то любое преобразование, которое допускают законы квантовой физики, можно реализовать с его помощью. Это значит, что с помощью универсального набора можно не просто выполнить любую квантовую программу, а имитировать любое физическое явление. Поэтому свойство универсальности позволяет использовать квантовые компьютеры для моделирования молекул, сверхпроводников и любых странных и прекрасных квантовых систем. Эта особенность квантовых компьютеров позволяет имитировать физические явления, что в перспективе позволит квантовым системам превзойти потенциал самых мощных суперкомпьютеров. Уже не скучно, правда?
Нас ждет еще много интересного!
С помощью этих (и некоторых других) важнейших вентилей уже можно создавать полнофункциональные квантовые цепи! В следующей публикации я расскажу, как с помощью этих новоприобретенных знаний можно реализовать квантовое преобразование Фурье — очень важную операцию, у которой есть огромное множество практических применений.
Дополнительные ресурсы
Комментарии (28)
mclander
09.04.2018 11:48Начнем с основ — с обозначений некоторых распространенных...
Похоже рано я обрадовался, что появилась статья, которая позволит мне быстро разобраться в квантовых вычислениях))stasus Автор
09.04.2018 12:40Это цикл статей, можно попробовать начать с первой habrahabr.ru/company/microsoft/blog/351622
Можно посмотреть видео
www.microsoft.com/en-us/research/video/quantum-future-computation
www.youtube.com/watch?v=5p2_moQZJWo&index=3&list=PLXtHYVsvn_b9LhFSXcMbgUK6YFWnI0P4H
smer44
09.04.2018 13:47нда, квантовые вычисления это самое «понятное» что я вообще видел в ИТ.
Вопрос — эти кубиты ведь нельзя реализовать обычной микроэлектроникой когда в микросхеме есть 2 ячейки связанные так что если одна 1 а другая 0, это было слишком легко, в чём тогда разница????stasus Автор
09.04.2018 13:56Реализовать нельзя, смоделитьровать можно. Смысл в том, что кубиты подчиняются законам квантовой механики, что позволяет, используя специализирванные алгоритмы, существенно ускорять некторые типы задач. Собственно, когда Фейнман предложил идею квантового компьютера, одна из проблем, которую он должен решить — моделирование квантовых систем.
Моделирование состояния N кубит на обычном компьютере требует 2^N обычных бит. Плюс требуется моделирование вентилей.
Реальный прорыв теоретически должен наступить при доступности квантовых компьютеорв с 100+ вычислительных кубит. Притом, что на текущий моент для реализации 1 вычислительного кубита требуется 5-10 физических кубит, так как необходима коррекция ошибок.smer44
09.04.2018 16:38Моделирование состояния N кубит на обычном компьютере требует 2^N обычных бит. Плюс требуется моделирование вентилей.
откуда там 2^n битов когда все эти вентили ~ n?
Почему это не эквивалентно обычным ячейкам на микросхеме соединённым всеми этими вентилями?
И если там всё вероятностно, как снимается выход квантовой системы для получении точного результата, и не получается ли что результат вероятностный, то есть не факторизация числа а «вероятность» что числа так факторизированы?stasus Автор
09.04.2018 16:55+1Состояние кубита описывается вероятностным распределением. До измерения он может находтся с определённой вероятностью в каждом из состояний. Поэтому 2^N коэффициентов — байт/слов, + какое-то количество на ветеля.
Кубит ru.wikipedia.org/wiki/%D0%9A%D1%83%D0%B1%D0%B8%D1%82
1 кубит описываются состоянием -> a|0> + b|1>, где a и b — комплексные числа и |a|^2+|b|^2=1, 2 числа
И да, результат измерения состояния кубита — вероятностный. |a|^2 — вероятность |0>, |b|^2 — вероятность |1>.
2 кубита описываются состоянием -> a|00> + b|01> + c|10> + d|11> — 4 числа
3 кубита -> a|000> + b|100>… + x|111> — 8 чисел
Прочитайте начало серии habrahabr.ru/company/microsoft/blog/351622, возможно, появится понимание
И требуются специальный алгоритмы для получения пользы от квантового компьютера, см. например, алгоритм Шора ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%A8%D0%BE%D1%80%D0%B0
helgisbox
09.04.2018 15:44Полезная серия, спасибо за работу! Есть одна проблема — три сферы Блоха не масштабируются, как бы их увидеть крупнее? Может есть ссылка?!
Вот под этим текстом: «Ниже работа этих преобразований проиллюстрирована с помощью сферы Блоха (ось вращения в каждом случае выделена красным; на картинку можно нажать, чтобы увеличить ее)»stasus Автор
09.04.2018 15:49
Closius
09.04.2018 18:33А можно какие нибудь жизненные примеры, а не голую математику? Например: вот так эта задача решается классическими вычислениями, а вот так квантовыми, при этом вижно такие то преимущества.
stasus Автор
09.04.2018 20:08Факторизации для достаточно больших чисел на обычных компьютерах является вычислительно сложной задачей. На этом основаны некоторое криптоалгоритмы.
При достаточном количестве вычислительных кубиков, используя алгоритм Шора, факторизации выполняется за конечное время.
stasus Автор
09.04.2018 20:12Чтобы разложить число М на простые множители, используя количество кубиков О(log M), необходимо время О(log^3 M)
stasus Автор
09.04.2018 20:16В целом, практическим ответом на ваш вопрос занимается сейчас огромное количество исследователей по всему миру. На эту тему регулярно выходят научные статьи.
Kobalt_x
09.04.2018 20:59Для того чтобы составить матрицу любого управляющего вентиля, нужно дописать единичную матрицу в левом верхнем углу матрицы нужного вентиля, а все остальные ячейки заполнить нулями.
Это называется тензорного домножить слева на I^n
Kobalt_x
09.04.2018 21:13Вот пример такого универсального набора: вентиль Адамара, вентиль фазового сдвига, вентиль CNOT и вентиль ??8.
Поправьте плз, вроде достаточно генераторов SU(2) и любого запутывающего преобразования
stasus Автор
10.04.2018 09:07Спасибо за комментарий! Но, это же пример, а не минимально достаточный набор.
Kobalt_x
10.04.2018 10:51Да, прошу извинить просто, хотелось бы услышать про выбор этого набора, м.б. его проще физически реализовать(про то что cnot уже физически реализован в различных моделях я слышал). Или может гейты высоких порядков через них проще выражать? Или просто проще для понимания в рамках этой серии статей?
stasus Автор
11.04.2018 10:06Так как мы говорим о квантовом компьютере в отрыве от его физической реализации, так что здесь скорее речь идёт о понимании в рамках этой серии статей.
Kobalt_x
10.04.2018 10:57Да, в принципе если бы Microsoft предлагал какие-нибудь инстансы с Q# в azure или HPC бэкенд к нему сделал какой, то в принципе это сильно бы упростило жизнь людям которые занимаются квант-вычем ибо такое ощущение что сейчас каждая группа под каждую задачу пилят свою версию элементарных преобразований/моделей зашумления/кодов коррекции
kovserg
10.04.2018 22:53Первое что смущает это оператор CNOT(q0,q1)
|q0.a| | 1 0 0 0 | | q0.a | |q0.b| = | 0 1 0 0 | * | q0.b | |q1.a| | 0 0 0 1 | | q1.a | |q1.b| | 0 0 1 0 | | q1.b |
Как получается (Controlled X)([control], (target)) в матрице этого нет.
получается q0=q0; q1=X(q1)
откуда controlled X
Вобщем смотрю
hello worldна 3 кубита https://www.youtube.com/watch?v=v7b4J2INq9c&t=88 и что-то не сростается. Чую подвох, но пока не могу сказать где.Kobalt_x
11.04.2018 00:27Посмотрите действие оператора на базовые состояния:
CNOT|00> = |00>
CNOT|01> = |01>
CNOT|10> = |11>
CNOT|11> = |10>
Теперь посмотрите на матрицу оператора, можно заметить что для состояния где контрольный кубит в 0, оператор действует как единичный.
Таким образом у оператора с контролем n кубитов идет блок I^n а в нижней клетке матрицы — собственно сам действующий операторkovserg
11.04.2018 20:44Собственно это и не срастается. Нижний блок в матрице зависит от состояния первого вектора. И такая матрица не описывает оператор CNOT
Kobalt_x
12.04.2018 06:43Где не срастается? В нижней клетке матрицы описывается оператор действующий на неконтрольные кубиты в данном случае это оператор not он же sigma X именно его матрица и описана внизу, что там зависит от входного вектора. Почему вам кажется что такая матрица не описывается CNOT?
vire
11.04.2018 13:26Спасибо! А нейроночку еще никто не пробовал на кубитах делать? Чувствуется, по своей природе они где-то рядом. Это же идеально, а то чо мы эти матрицы перемножаем.
Как бы это могло выглядеть? В такой сети не будет «вычислений»? Т.е достаточно произвести измерение, и это будет результатом работы нейронки в этот момент?stasus Автор
11.04.2018 13:27Квантовое машинное обучение — основы, алгоритмы, подборка проектов в вебе.
github.com/krishnakumarsekar/awesome-quantum-machine-learning
kovserg
Начнём с простого как представить целое число. Как поделить одно число на другое с помощью имеющегося набора универсальных вентилей?
quantumexperience.ng.bluemix.net/qx/editor
stasus Автор
1. Квантовый компьютер бессмыслено использовать для обычных вычислений. Это скорее сопроцессор к обычному компьютеру.
2. Это цикл статей, а не одна статья, которая должна дать ответ на все вопросы.
3. Но если это именно вопрос, то вот в этой статье можно найти частичный ответ arxiv.org/abs/1609.01241 и здесь arxiv.org/pdf/1609.01241.pdf