Современные методики расчета геометрии магнитных материалов затрудняют выбор ее оптимальных параметров из-за высокого показателя нелинейности (так называемого магнитного гистерезиса). Даже после выполнения моделирования геометрии возникают ошибки при вычислении магнитных потерь, которые могут значительно отличаться от экспериментально измеренных значений. Компания Fujitsu разработала ИИ-технологию, автоматически рассчитывающую оптимальную геометрию магнитных материалов. Об этой инновации мы расскажем в данной статье.
Материалы, которые при воздействии на них магнитного поля работают в качестве магнита, используются в различных компонентах и устройствах, включая электромоторы и индукторы, позволяющие сохранять электроэнергию в аккумуляторах. При этом магнетизм сам по себе вызывает потерю энергии. Уровень магнитных потерь серьезно зависит от геометрии магнитных материалов. В итоге он напрямую связан с энергоэффективностью компонента или устройства. Поэтому для обеспечения высокой энергоэффективности очень важно рассчитать оптимальную геометрию материалов с учетом магнитных потерь.
Компания Fujitsu разработала ИИ-технологию, которая автоматически рассчитывает геометрию магнитных материалов в виртуальном пространстве для сокращения потери энергии. Новая разработка значительно повышает эффективность конструкторских отделов, позволяя рассчитывать геометрию магнитов для различных областей применения, включая силовую электронику и электромоторы. Технология Fujitsu сокращает сроки разработки прототипов с нескольких месяцев до нескольких дней.
С ее помощью можно с высокой точностью просчитать распределение вихревых токов, которые проходят через индуктор. Для этого необходимо представить их в виде формулы диэлектрических эффектов ферритных микроструктур, используемых в качестве индуктивных материалов. В используемых ранее методах оценки существовало ограничение в точности определения размера потери на вихревых токах в случае, если рабочая частота индуктора превышала несколько десятков килогерц. Новая разработка позволяет выполнять оценку при частоте, достигающей несколько мегагерц.
Слева — моделирование магнитных потерь индуктора (распределение плотности магнитного потока в магнитном материале). Справа — сравнение экспериментальных и смоделированных результатов
Результаты автоматизированного проектирования индуктора (каждая точка соответствует одному из вариантов геометрии индуктора)
За счет объединения новой методики моделирования магнитных потерь с генетическим алгоритмом* Fujitsu создала формулу для автоматического поиска набора геометрических параметров. Они обладают оптимальной по Парето формой** (размерами для каждой части формы магнитного материала) и максимально сокращают магнитные потери энергии. К 2020 году Fujitsu планирует представить на рынке услуги проектирования, которые будут включать в себя описанную выше технологию.
* Вычислительный метод оптимизации, работающий на основе принципов биологической эволюции. Для имеющегося поколения возможных решений создаются несколько копий, которые затем перекрещиваются друг с другом и мутируют. «Выжившие» копии отбираются для создания следующего поколения решений. Путем повторения этого процесса обираются лучшие решения.
** В ситуации минимизации нескольких значений, которые имеют компромиссное соотношение, и отсутствия обстоятельств, которые предоставили бы меньшие значения для всех переменных, эти параметры называются оптимальными по Парето. Как правило, существует несколько оптимум Парето, и линия или плоскость, сформированная этими оптимумами, называется оптимальной по Парето формой.
Материалы, которые при воздействии на них магнитного поля работают в качестве магнита, используются в различных компонентах и устройствах, включая электромоторы и индукторы, позволяющие сохранять электроэнергию в аккумуляторах. При этом магнетизм сам по себе вызывает потерю энергии. Уровень магнитных потерь серьезно зависит от геометрии магнитных материалов. В итоге он напрямую связан с энергоэффективностью компонента или устройства. Поэтому для обеспечения высокой энергоэффективности очень важно рассчитать оптимальную геометрию материалов с учетом магнитных потерь.
Преимущества новой технологии
Компания Fujitsu разработала ИИ-технологию, которая автоматически рассчитывает геометрию магнитных материалов в виртуальном пространстве для сокращения потери энергии. Новая разработка значительно повышает эффективность конструкторских отделов, позволяя рассчитывать геометрию магнитов для различных областей применения, включая силовую электронику и электромоторы. Технология Fujitsu сокращает сроки разработки прототипов с нескольких месяцев до нескольких дней.
С ее помощью можно с высокой точностью просчитать распределение вихревых токов, которые проходят через индуктор. Для этого необходимо представить их в виде формулы диэлектрических эффектов ферритных микроструктур, используемых в качестве индуктивных материалов. В используемых ранее методах оценки существовало ограничение в точности определения размера потери на вихревых токах в случае, если рабочая частота индуктора превышала несколько десятков килогерц. Новая разработка позволяет выполнять оценку при частоте, достигающей несколько мегагерц.
Слева — моделирование магнитных потерь индуктора (распределение плотности магнитного потока в магнитном материале). Справа — сравнение экспериментальных и смоделированных результатов
Практическая польза инновации
Результаты автоматизированного проектирования индуктора (каждая точка соответствует одному из вариантов геометрии индуктора)
За счет объединения новой методики моделирования магнитных потерь с генетическим алгоритмом* Fujitsu создала формулу для автоматического поиска набора геометрических параметров. Они обладают оптимальной по Парето формой** (размерами для каждой части формы магнитного материала) и максимально сокращают магнитные потери энергии. К 2020 году Fujitsu планирует представить на рынке услуги проектирования, которые будут включать в себя описанную выше технологию.
* Вычислительный метод оптимизации, работающий на основе принципов биологической эволюции. Для имеющегося поколения возможных решений создаются несколько копий, которые затем перекрещиваются друг с другом и мутируют. «Выжившие» копии отбираются для создания следующего поколения решений. Путем повторения этого процесса обираются лучшие решения.
** В ситуации минимизации нескольких значений, которые имеют компромиссное соотношение, и отсутствия обстоятельств, которые предоставили бы меньшие значения для всех переменных, эти параметры называются оптимальными по Парето. Как правило, существует несколько оптимум Парето, и линия или плоскость, сформированная этими оптимумами, называется оптимальной по Парето формой.
mwizard
Разве теперь генетические алгоритмы являются ИИ?
FeeAR Автор
Генетические алгоритмы, конечно, не являются ИИ. Речь идет об объединении технологии, использующей возможности искусственного интеллекта с генетическими алгоритмами. Фактически, о синергии.
hv1
Генетические алгоритмы — такой же раздел ИИ, как нейронные сети и нечеткая логика.
Вики намекает: en.wikipedia.org/wiki/Artificial_intelligence#Search_and_optimization
hv1
Забыл добавить, что в зарубежных вузах генетические алгоритмы обычно преподаются в рамках курсов AI.
Субъективно, у русскоязычных студентов и инженеров иногда возникает путаница с пониманием термина ИИ, из-за бытового восприятия слова «интеллект» и качества учебных материалов (включая переводы) по теме. Во всяком случае так было 5 лет назад, и сейчас я могу ошибаться.
menstenebris
Для бизнеса вообще смешались в кучу искусственный интеллект, машинное обучение и методы оптимизации.
smer44
генетические алгоритмы — часть машинного обучения, которое упрощённо называют «ИИ».
хоть в генетических алгоритмах, нейронках, фаззи лгике и прочего настоящего ИИ 0%.
Тут речь идёт об инженерном алгоритме (методика моделирования магнитных потерь) с которой используется эволюционный алгоритм. никакой «технологии, использующей возможности искусственного интеллекта» тут нет,
mwizard
В мое время это называлось «оптимизацией функций», и к ИИ не имело ни малейшего отношения.
smer44
а что в ваше время имело отношение к ии?