Здравствуйте, продолжение статьи про методы создания эмбедингов предложений. В этом гайде мало слов и много кода, готово для Ctrl+с, Ctrl+v, улучшений и дальнейших тестов.


Часть1 обязательна для ознакомления


4. BERT


from deeppavlov.core.common.file import read_json
from deeppavlov import build_model, configs
from deeppavlov.models.embedders.elmo_embedder import ELMoEmbedder
# ссылка для скачивания моделей http://docs.deeppavlov.ai/en/master/features/pretrained_vectors.html

4.1 rubert_cased_L-12_H-768_A-12_pt


class RU_BERT_CLASS:
    def __init__(self, name):
        bert_config = read_json(configs.embedder.bert_embedder)
        bert_config['metadata']['variables']['BERT_PATH'] = os.path.join('./.', name)
        self.m = build_model(bert_config)

    def vectorizer(self, sentences):
        return [sentence.split() for sentence in sentences]

    def predict(self, tokens):
        _, _, _, _, sent_max_embs, sent_mean_embs, _ = self.m(tokens)
        return sent_mean_embs

bert = RU_BERT_CLASS('rubert_cased_L-12_H-768_A-12_pt')
get_similarity_values = similarity_values_wrapper(bert.predict, bert.vectorizer, distance_function=cosine_distances)
evaluate(get_similarity_values, 'rubert')

'rubert: 2895.7'


4.2 ru_conversational_cased_L-12_H-768_A-12_pt


bert = RU_BERT_CLASS('ru_conversational_cased_L-12_H-768_A-12_pt')
get_similarity_values = similarity_values_wrapper(bert.predict, bert.vectorizer, distance_function=cosine_distances)
evaluate(get_similarity_values, 'ru_conversational')

'ru_conversational: 3559.1'


4.3 sentence_ru_cased_L-12_H-768_A-12_pt


bert = RU_BERT_CLASS('sentence_ru_cased_L-12_H-768_A-12_pt')
get_similarity_values = similarity_values_wrapper(bert.predict, bert.vectorizer, distance_function=cosine_distances)
evaluate(get_similarity_values, 'sentence_ru')

'sentence_ru: 2660.2'


4.4 elmo_ru-news_wmt11-16_1.5M_steps


class ELMO_CLASS(RU_BERT_CLASS):
    def __init__(self, name):
        self.m = ELMoEmbedder(f"http://files.deeppavlov.ai/deeppavlov_data/{name}")

    def predict(self, tokens):
        return self.m(tokens)

elmo = ELMO_CLASS('elmo_ru-news_wmt11-16_1.5M_steps.tar.gz')
get_similarity_values = similarity_values_wrapper(elmo.predict, elmo.vectorizer, distance_function=cosine_distances)
evaluate(get_similarity_values, 'elmo_ru-news')

'elmo_ru-news: 4631.3'


4.5 elmo_ru-wiki_600k_steps


elmo = ELMO_CLASS('elmo_ru-wiki_600k_steps.tar.gz')
get_similarity_values = similarity_values_wrapper(elmo.predict, elmo.vectorizer, distance_function=cosine_distances)
evaluate(get_similarity_values, 'elmo_ru-wiki')

'elmo_ru-wiki: 4507.6'


4.6 elmo_ru-twitter_2013-01_2018-04_600k_steps


elmo = ELMO_CLASS('elmo_ru-twitter_2013-01_2018-04_600k_steps.tar.gz')
get_similarity_values = similarity_values_wrapper(elmo.predict, elmo.vectorizer, distance_function=cosine_distances)
evaluate(get_similarity_values, 'elmo_ru-twitter')

'elmo_ru-twitter: 2962.2'


plot_results()

png


5. Автоэнкодеры


Автоэнкодеры созданы для сжатия многомерного ветора до одномерного и, теоретически, должны идеально подойти для создания эмбедингов предложения.


5.1 Автоэнкодер embedings -> embedings


def models_builder(data_generator):
    def cosine_loss(y_true, y_pred):
        return K.mean(cosine_similarity(y_true, y_pred, axis=-1))

    complexity = 300
    inp = Input(shape=(data_generator.max_len, data_generator.embedding_size))
    X = inp
    X = Bidirectional(LSTM(complexity, return_sequences=True))(X)
    X = Bidirectional(LSTM(int(complexity/10), return_sequences=True))(X)
    X = Flatten()(X)
    X = Dense(complexity, activation='elu')(X)
    X = Dense(complexity, activation='elu')(X)
    X = Dense(complexity, activation='linear', name='embeding_output')(X)
    X = Dense(complexity, activation='elu')(X)
    X = Dense(data_generator.max_len*complexity, activation='elu')(X)
    X = Reshape((data_generator.max_len, complexity))(X)
    X = Bidirectional(LSTM(complexity, return_sequences=True))(X)
    X = Bidirectional(LSTM(complexity, return_sequences=True))(X)
    X = Dense(data_generator.embedding_size, activation='elu')(X)
    autoencoder = Model(inputs=inp, outputs=X)
    autoencoder.compile(loss=cosine_loss, optimizer='adam')
    autoencoder.summary()

    embedder = Model(inputs=inp, outputs=autoencoder.get_layer('embeding_output').output)
    return autoencoder, embedder

data_generator = EmbedingsDataGenerator(use_fasttext=False)
autoencoder, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize, distance_function=cosine_distances)

new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'автоэнкодер embedings -> embedings')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i > 20:
            break
    for x, y in data_generator:
        autoencoder.train_on_batch(x, x)

0 1770.2
3 212.6
6 138.8
9 84.8
12 78.1
15 106.4
18 112.7
21 79.7


5.2 Автоэнкодер embedings -> indexes


def models_builder(data_generator):
    complexity = 300
    inp = Input(shape=(data_generator.max_len, data_generator.embedding_size))
    X = inp
    X = Bidirectional(LSTM(complexity, return_sequences=True))(X)
    X = Bidirectional(LSTM(int(complexity/10), return_sequences=True))(X)
    X = Flatten()(X)
    X = Dense(complexity, activation='elu')(X)
    X = Dense(complexity, activation='elu')(X)
    X = Dense(complexity, activation='linear', name='embeding_output')(X)
    X = Dense(complexity, activation='elu')(X)
    X = Dense(data_generator.max_len*complexity, activation='elu')(X)
    X = Reshape((data_generator.max_len, complexity))(X)
    X = Bidirectional(LSTM(complexity, return_sequences=True))(X)
    X = Bidirectional(LSTM(complexity, return_sequences=True))(X)
    X = Dense(len(data_generator.token2index), activation='softmax')(X)
    autoencoder = Model(inputs=inp, outputs=X)
    autoencoder.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
    autoencoder.summary()

    embedder = Model(inputs=inp, outputs=autoencoder.get_layer('embeding_output').output)
    return autoencoder, embedder

data_generator = IndexesDataGenerator()
autoencoder, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'автоэнкодер embedings -> indexes')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i > 20:
            break
    for x_e, x_i, y_i in data_generator:
        autoencoder.train_on_batch(x_e, x_i)

0 1352.9
3 43.6
6 41.7
9 8.1
12 -5.6
15 43.1
18 36.1
21 -3.7


5.3 Автоэнкодер архитектура LSTM -> LSTM


def models_builder(data_generator):
    def cosine_loss(y_true, y_pred):
        return K.mean(cosine_similarity(y_true, y_pred, axis=-1))

    complexity = 300
    inp = Input(shape=(data_generator.max_len, data_generator.embedding_size))
    X = inp
    X, state_h, state_c = LSTM(complexity, return_state=True)(X)
    X = Concatenate()([state_h, state_c])
    X = Dense(complexity, activation='linear', name='embeding_output')(X)

    state_c = Dense(complexity, activation='linear')(X)
    state_h = Dense(complexity, activation='linear')(X)
    inp_zeros = Input(shape=(data_generator.max_len, data_generator.embedding_size))

    X = LSTM(complexity, return_sequences=True)(inp_zeros, [state_c, state_h])
    X = Dense(data_generator.embedding_size, activation='linear')(X)

    autoencoder = Model(inputs=[inp, inp_zeros], outputs=X)
    autoencoder.compile(loss=cosine_loss, optimizer='adam')
    autoencoder.summary()

    embedder = Model(inputs=inp, outputs=autoencoder.get_layer('embeding_output').output)
    return autoencoder, embedder

data_generator = EmbedingsDataGenerator(use_fasttext=False)
autoencoder, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

zeros = np.zeros((data_generator.batch_size, data_generator.max_len, data_generator.embedding_size))
new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'автоэнкодер embedings -> indexes')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i > 20:
            break
    for x, y in data_generator:
        autoencoder.train_on_batch([x, zeros], x)

0 1903.6
3 1299.3
6 313.5
9 445.3
12 454.9
15 447.7
18 454.5
21 448.1


5.4 Автоэнкодер архитектура LSTM -> LSTM -> indexes


def models_builder(data_generator):
    complexity = 300
    inp = Input(shape=(data_generator.max_len, data_generator.embedding_size))
    X = inp
    X, state_h, state_c = LSTM(complexity, return_state=True)(X)
    X = Concatenate()([state_h, state_c])
    X = Dense(complexity, activation='linear', name='embeding_output')(X)
    state_c = Dense(complexity, activation='linear')(X)
    state_h = Dense(complexity, activation='linear')(X)
    inp_zeros = Input(shape=(data_generator.max_len, data_generator.embedding_size))

    X = LSTM(complexity, return_sequences=True)(inp_zeros, [state_c, state_h])
    X = Dense(len(data_generator.token2index), activation='softmax')(X)

    autoencoder = Model(inputs=[inp, inp_zeros], outputs=X)
    autoencoder.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
    autoencoder.summary()

    embedder = Model(inputs=inp, outputs=autoencoder.get_layer('embeding_output').output)
    return autoencoder, embedder

data_generator = IndexesDataGenerator()
autoencoder, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

zeros = np.zeros((data_generator.batch_size, data_generator.max_len, data_generator.embedding_size))
new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'автоэнкодер архитектура LSTM -> LSTM -> indexes')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i > 20:
            break
    for x_e, x_i, y_i in data_generator:
        autoencoder.train_on_batch([x_e, zeros], x_i)

0 1903.6
3 1483.3
6 1249.3
9 566.3
12 789.2
15 702.3
18 480.5
21 552.3
24 533.0


Методы с учителем


6. Эмбединги на Transfer Learning


TEXTS_CORPUS_WITH_LABEL = [(sentence, topic) for topic in texts_for_training for sentence in texts_for_training[topic]]

class BowDataGenerator(EmbedingsDataGenerator):
    def __init__(self, texts_topics=TEXTS_CORPUS_WITH_LABEL, batch_size=128, batches_per_epoch=100):
        self.texts_topics = texts_topics
        self.topic2index = {topic: index for index, topic in enumerate({topic for text, topic in self.texts_topics})}
        self.batch_size = batch_size
        self.batches_per_epoch = batches_per_epoch
        self.count_vectorizer = CountVectorizer().fit([text_topic[0] for text_topic in self.texts_topics])
        counts = Counter([text_topic[1] for text_topic in self.texts_topics])
        self.class_weight = {self.topic2index[intent_id]:1/counts[intent_id] for intent_id in counts}

    def vectorize(self, sentences):
        return self.count_vectorizer.transform(sentences).toarray()

    def __iter__(self):
        for _ in tqdm(range(self.batches_per_epoch), leave=False):
            X_batch = []
            y_batch = []
            finished_batch = False
            while not finished_batch:
                text, topic = random.choice(self.texts_topics)
                X_batch.append(text)
                y_batch.append(self.topic2index[topic])

                if len(X_batch) >= self.batch_size:
                    X_batch = self.count_vectorizer.transform(X_batch).toarray()
                    y_batch = to_categorical(y_batch, num_classes=len(self.topic2index))
                    yield np.array(X_batch), np.array(y_batch)
                    finished_batch = True

data_generator = BowDataGenerator()

6.1 Эмбединги на основе BOW


def models_builder(data_generator):
    complexity = 500
    inp = Input(shape=(len(data_generator.count_vectorizer.get_feature_names()),))
    X = inp
    X = Dense(complexity)(X)
    X = Activation('elu')(X)
    X = Dense(complexity)(X)
    X = Activation('elu')(X)
    X = Dense(complexity, name='embeding_output')(X)
    X = Activation('elu')(X)
    X = Dense(len(data_generator.topic2index), activation='softmax')(X)

    model = Model(inputs=inp, outputs=X)
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
    model.summary()

    embedder = Model(inputs=inp, outputs=model.get_layer('embeding_output').output)
    return model, embedder

data_generator = BowDataGenerator()
model, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'ембединг на BOW')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i > 20:
            break
    for x, y in data_generator:
        model.train_on_batch(x, y, class_weight=data_generator.class_weight)

0 601.4
3 1175.4
6 1187.0
9 1175.9
12 1097.9
15 1083.4
18 1083.8
21 1060.5


6.2 Эмбединг на LSTM + MaxPooling (InferSent)


Сыылки на стать:
Arxiv с теорией
Объяснено по-человечески


class LabelsDataGenerator(EmbedingsDataGenerator):
    def __init__(self, texts_topics=TEXTS_CORPUS_WITH_LABEL, target_len=20, batch_size=128, batches_per_epoch=100, use_word2vec=True, use_fasttext=True):
        self.texts_topics = texts_topics
        self.topic2index = {topic: index for index, topic in enumerate({topic for text, topic in self.texts_topics})}
        self.target_len = target_len
        self.batch_size = batch_size
        self.batches_per_epoch = batches_per_epoch
        self.use_word2vec = use_word2vec
        self.use_fasttext = use_fasttext
        self.embedding_size = len(vectorize('token', use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext))
        counts = Counter([text_topic[1] for text_topic in self.texts_topics])
        self.class_weight = {self.topic2index[intent_id]:1/counts[intent_id] for intent_id in counts}       

    def vectorize(self, sentences):
        vectorized = []
        for text in sentences:
            tokens = str(text).split()
            x_vec = []
            for token in tokens:
                token_vec = vectorize(token, use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext)                       
                x_vec.append(token_vec)
            vectorized.append(x_vec)

        vectorized = pad_sequences(vectorized, maxlen=self.target_len)
        return vectorized

    def __iter__(self):
        for _ in tqdm(range(self.batches_per_epoch), leave=False):
            X_batch = []
            y_batch = []
            finished_batch = False
            while not finished_batch:
                text, topic = random.choice(self.texts_topics)
                tokens = text.split()
                x_vec = []
                for token in tokens:
                    token_vec = vectorize(token, use_word2vec=self.use_word2vec, use_fasttext=self.use_fasttext)
                    if len(x_vec) >= self.target_len:
                        X_batch.append(x_vec)
                        y_batch.append(self.topic2index[topic])
                        if len(X_batch) >= self.batch_size:
                            break
                    x_vec.append(token_vec)
                else:
                    X_batch.append(x_vec)
                    y_batch.append(self.topic2index[topic])

                if len(X_batch) >= self.batch_size:
                    X_batch = pad_sequences(X_batch, maxlen=self.target_len)
                    y_batch = to_categorical(y_batch, num_classes=len(self.topic2index))
                    yield np.array(X_batch), np.array(y_batch)
                    finished_batch = True

def models_builder(data_generator):
    complexity = 768
    inp = Input(shape=(data_generator.target_len, data_generator.embedding_size))
    X = inp
    X = Bidirectional(LSTM(complexity, return_sequences=True))(X)
    X = Permute((2,1))(X)
    X = MaxPooling1D(pool_size=600)(X)
    X = Flatten()(X)
    X = Dense(complexity)(X)
    X = Activation('elu')(X)
    X = Dense(complexity, name='embeding_output')(X)
    X = Activation('sigmoid')(X)
    X = Dense(len(data_generator.topic2index), activation='softmax')(X)

    model = Model(inputs=inp, outputs=X)
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
    model.summary()

    embedder = Model(inputs=inp, outputs=model.get_layer('embeding_output').output)
    return model, embedder

data_generator = LabelsDataGenerator()
model, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'эмбединг на LSTM + MaxPooling')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i > 20:
            break
    for x, y in data_generator:
        model.train_on_batch(x, y, class_weight=data_generator.class_weight)

0 87.0
3 152.1
6 110.5
9 146.7
12 166.2
15 79.8
18 47.2
21 84.0
24 144.8
27 83.8


6.3 Эмбединг на LSTM + Conv1D + AveragePooling


def models_builder(data_generator):
    complexity = 600
    inp = Input(shape=(data_generator.target_len, data_generator.embedding_size))
    X_R = inp
    X_R = Bidirectional(LSTM(complexity, return_sequences=True))(X_R)
    X_R = Bidirectional(LSTM(complexity, return_sequences=True))(X_R)

    X_C = inp
    X_C = Conv1D(complexity, 3, strides=1, padding='same')(X_C)
    X_C = Conv1D(complexity, 3, strides=1, padding='same')(X_C)

    X = Concatenate()([X_R, X_C])
    X = AveragePooling1D(pool_size=2)(X)

    X = Conv1D(complexity, 3, strides=1, padding='same')(X)
    X = AveragePooling1D(pool_size=2)(X)

    X = Conv1D(complexity, 3, strides=1, padding='same')(X)
    X = AveragePooling1D(pool_size=2)(X)
    X = Flatten()(X)
    X = Dense(complexity)(X)
    X = Activation('sigmoid')(X)
    X = Dense(complexity, name = 'embeding_output')(X)
    X = Activation('elu')(X)
    X = Dense(len(data_generator.topic2index), activation='softmax')(X)

    model = Model(inputs=inp, outputs=X)
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
    model.summary()

    embedder = Model(inputs=inp, outputs=model.get_layer('embeding_output').output)
    return model, embedder

data_generator = LabelsDataGenerator()
model, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

0 353.8
3 -147.8
6 7.6
9 5.5
12 -133.6
15 -133.6
18 9.0
21 9.0
24 -133.6


6.4 Эмбединг на LSTM + Inception + Attention


def models_builder(data_generator):
    rate = 0.20
    complexity = 500

    def inception_convolutional_layer(X, complexity, rate=0.2, regularizer=0):
        X_7 = Conv1D(int(complexity/7), kernel_size=7, strides=1, padding='same')(X)
        X_6 = Conv1D(int(complexity/6), kernel_size=6, strides=1, padding='same')(X)
        X_5 = Conv1D(int(complexity/5), kernel_size=5, strides=1, padding='same')(X)
        X_4 = Conv1D(int(complexity/4), kernel_size=4, strides=1, padding='same')(X)
        X_3 = Conv1D(int(complexity/3), kernel_size=3, strides=1, padding='same')(X)
        X_2 = Conv1D(int(complexity/2), kernel_size=2, strides=1, padding='same')(X)
        X_1 = Conv1D(int(complexity/1), kernel_size=1, strides=1, padding='same')(X)
        X = Concatenate()([X_7, X_6, X_5, X_4, X_3, X_2, X_1])
        X = Activation('elu')(X)
        X = BatchNormalization()(X)
        X = Dropout(rate)(X)
        return X

    def bi_LSTM(X, complexity, rate=0.2, regularizer=0):
        X = Bidirectional(LSTM(int(complexity/2), return_sequences=True))(X)
        X = BatchNormalization()(X)
        X = Dropout(rate)(X)
        return X

    def dense_layer(X, complexity, activation='elu', rate=0.2, regularizer=0, name=None):
        X = Dense(int(complexity), name=name)(X)
        X = Activation(activation)(X)
        X = BatchNormalization()(X)
        X = Dropout(rate)(X)
        return X

    inp = Input(shape=(data_generator.target_len, data_generator.embedding_size))
    X = inp
    X = inception_convolutional_layer(X, complexity)
    X = inception_convolutional_layer(X, complexity)
    X = inception_convolutional_layer(X, complexity)
    X = MaxPooling1D(pool_size=2)(X)
    X = inception_convolutional_layer(X, complexity)
    X = MaxPooling1D(pool_size=2)(X)
    X = inception_convolutional_layer(X, complexity)
    X = MaxPooling1D(pool_size=2)(X)

    R = inp
    R = bi_LSTM(R, complexity)
    R = bi_LSTM(R, complexity/2)
    attention_probs = Dense(int(complexity/2), activation='sigmoid', name='attention_probs')(R)
    R = multiply([R, attention_probs], name='attention_mul')
    R = Dropout(rate)(R)
    R = MaxPooling1D(pool_size=2)(R)
    R = inception_convolutional_layer(R, complexity)
    R = MaxPooling1D(pool_size=2)(R)
    R = inception_convolutional_layer(R, complexity)
    R = MaxPooling1D(pool_size=2)(R)

    X = Concatenate(axis=-1)([X, R])
    X = Flatten()(X)
    X = BatchNormalization()(X)
    X = Dropout(rate)(X)

    X = dense_layer(X, complexity)
    X = dense_layer(X, complexity, activation='sigmoid')
    X = dense_layer(X, complexity, name='embeding_output')

    X = Dense(len(data_generator.topic2index), activation='softmax')(X)

    model = Model(inputs=inp, outputs=X)
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['acc'])
    model.summary()

    embedder = Model(inputs=inp, outputs=model.get_layer('embeding_output').output)
    return model, embedder

data_generator = LabelsDataGenerator()
model, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'эмбединг на LSTM + Inception + Attention')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i > 20:
            break
    for x, y in data_generator:
        model.train_on_batch(x, y, class_weight=data_generator.class_weight)

0 275.0
3 126.8
6 173.9
9 155.5
12 168.4
15 287.2
18 382.8
21 303.4


plot_results()

png


7 Triplet loss


Обучение будет происходит на том, что векторы из одной темы должны распологаться ближе друг к другу, а из разных тем, дальше. Тем самым предложения, иемющие похожий смысл будут стоять ближ друг к другу, а разный, будут отстоять друг от друга.
Подробнее про Triplet loss вот тут


7.1 Triplet loss на BOW


class TripletDataGeneratorIndexes(BowDataGenerator):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.database = {}
        for text, topic in self.texts_topics:
            if topic not in self.database:
                self.database[topic] = []
            self.database[topic].append(text)
        # почистим все интенты с <5 сообщениями 
        sh_database = {}
        for topic in self.database:
            if len(self.database[topic]) > 5:
                sh_database[topic] = self.database[topic]
        self.database = sh_database

        self.all_topics = [topic for topic in self.database]

    def __iter__(self):
        for _ in tqdm(range(self.batches_per_epoch), leave=False):
            anchor = []
            positive = []
            negative = []

            for _ in range(self.batch_size):
                anchor_topic = random.choice(self.all_topics)
                anchor_index = np.random.randint(len(self.database[anchor_topic]))
                positive_index = np.random.randint(len(self.database[anchor_topic]))
                while positive_index == anchor_index:
                    positive_index = np.random.randint(len(self.database[anchor_topic]))

                negative_topic = random.choice(self.all_topics)
                while negative_topic == anchor_topic:
                    negative_topic = random.choice(self.all_topics)

                negative_index = np.random.randint(len(self.database[negative_topic]))

                anchor.append(self.database[anchor_topic][anchor_index])
                positive.append(self.database[anchor_topic][positive_index])
                negative.append(self.database[negative_topic][negative_index])

            yield self.vectorize(anchor), self.vectorize(positive), self.vectorize(negative)

def models_builder(data_generator):
    sentence_embeding_size = 100
    def lossless_triplet_loss(y_true, y_pred, N=sentence_embeding_size, beta=100, epsilon=1e-8):
        """
        Implementation of the triplet loss function

        Arguments:
        y_true -- true labels, required when you define a loss in Keras, you don't need it in this function.
        y_pred -- python list containing three objects:
                anchor -- the encodings for the anchor data
                positive -- the encodings for the positive data (similar to anchor)
                negative -- the encodings for the negative data (different from anchor)
        N  --  The number of dimension 
        beta -- The scaling factor, N is recommended
        epsilon -- The Epsilon value to prevent ln(0)

        Returns:
        loss -- real number, value of the loss
        """
        anchor = tf.convert_to_tensor(y_pred[:,0:N])
        positive = tf.convert_to_tensor(y_pred[:,N:N*2]) 
        negative = tf.convert_to_tensor(y_pred[:,N*2:N*3])

        # distance between the anchor and the positive
        pos_dist = tf.reduce_sum(tf.square(tf.subtract(anchor,positive)),1)
        # distance between the anchor and the negative
        neg_dist = tf.reduce_sum(tf.square(tf.subtract(anchor,negative)),1)

        #Non Linear Values  
        pos_dist = -tf.math.log(-tf.math.divide((pos_dist),beta)+1+epsilon)
        neg_dist = -tf.math.log(-tf.math.divide((N-neg_dist),beta)+1+epsilon)

        # compute loss
        loss = neg_dist + pos_dist
        return loss

    def basic_sentence_vectorizer():
        inp = Input(shape=(len(data_generator.count_vectorizer.get_feature_names()),))
        X = inp
        X = Dense(complexity)(X)
        X = Activation('elu')(X)
        X = Dense(complexity)(X)
        X = Activation('elu')(X)
        X = Dense(complexity, name='embeding_output')(X)
        X = Activation('elu')(X)
        X = Dense(complexity)(X)
        vectorizer = Model(inputs=inp, outputs=X)
        return vectorizer

    complexity = 300

    inp_anchor = Input(shape=(len(data_generator.count_vectorizer.get_feature_names()),))
    inp_positive = Input(shape=(len(data_generator.count_vectorizer.get_feature_names()),))
    inp_negative = Input(shape=(len(data_generator.count_vectorizer.get_feature_names()),))

    embedder = basic_sentence_vectorizer()

    anchor = embedder(inp_anchor)
    positive = embedder(inp_positive)
    negative = embedder(inp_negative)

    output = Concatenate(axis=1)([anchor, positive, negative])

    model = Model(inputs=[inp_anchor, inp_positive, inp_negative], outputs=output)
    model.compile(optimizer='adagrad', loss=lossless_triplet_loss)
    model.summary()
    return model, embedder

data_generator = TripletDataGeneratorIndexes(batch_size=128, batches_per_epoch=10000)
model, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

zeros = np.zeros((data_generator.batch_size, 1, 1))
new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'triplet loss indexes')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i > 20:
            break
    for a, p, n in data_generator:
        model.train_on_batch([a, p, n], zeros)

0 724.1
3 -143.5
6 11.7
9 36.2
12 -123.5
15 150.1
18 -51.9
21 5.0
24 -43.5


7.2 Triplet loss на embedings


class TripletDataGeneratorEmbedings(TripletDataGeneratorIndexes):
    def __init__(self, *args, **kwargs):
        super().__init__()
        self.target_len = kwargs['target_len']
        self.embedding_size = len(vectorize('any_token'))
        self.use_word2vec = True
        self.use_fasttext = True
        self.batches_per_epoch = kwargs['batches_per_epoch']

    def vectorize(self, sentences):
        return LabelsDataGenerator.vectorize(self, sentences)

def models_builder(data_generator):
    sentence_embeding_size = 300
    def lossless_triplet_loss(y_true, y_pred, N=sentence_embeding_size, beta=100, epsilon=1e-8):
        """
        Implementation of the triplet loss function

        Arguments:
        y_true -- true labels, required when you define a loss in Keras, you don't need it in this function.
        y_pred -- python list containing three objects:
                anchor -- the encodings for the anchor data
                positive -- the encodings for the positive data (similar to anchor)
                negative -- the encodings for the negative data (different from anchor)
        N  --  The number of dimension
        beta -- The scaling factor, N is recommended
        epsilon -- The Epsilon value to prevent ln(0)

        Returns:
        loss -- real number, value of the loss
        """
        anchor = tf.convert_to_tensor(y_pred[:,0:N])
        positive = tf.convert_to_tensor(y_pred[:,N:N*2])
        negative = tf.convert_to_tensor(y_pred[:,N*2:N*3])

        # distance between the anchor and the positive
        pos_dist = tf.math.reduce_sum(tf.math.square(tf.math.subtract(anchor,positive)),1)
        # distance between the anchor and the negative
        neg_dist = tf.math.reduce_sum(tf.math.square(tf.math.subtract(anchor,negative)),1)

        #Non Linear Values  
        pos_dist = -tf.math.log(-tf.math.divide((pos_dist),beta)+1+epsilon)
        neg_dist = -tf.math.log(-tf.math.divide((N-neg_dist),beta)+1+epsilon)

        # compute loss
        loss = neg_dist + pos_dist

        return loss

    def inception_convolutional_layer(X, complexity, rate=0.2, regularizer=0):
        X_7 = Conv1D(int(complexity/7), kernel_size=7, strides=1, padding='same')(X)
        X_6 = Conv1D(int(complexity/6), kernel_size=6, strides=1, padding='same')(X)
        X_5 = Conv1D(int(complexity/5), kernel_size=5, strides=1, padding='same')(X)
        X_4 = Conv1D(int(complexity/4), kernel_size=4, strides=1, padding='same')(X)
        X_3 = Conv1D(int(complexity/3), kernel_size=3, strides=1, padding='same')(X)
        X_2 = Conv1D(int(complexity/2), kernel_size=2, strides=1, padding='same')(X)
        X_1 = Conv1D(int(complexity/1), kernel_size=1, strides=1, padding='same')(X)
        X = Concatenate()([X_7, X_6, X_5, X_4, X_3, X_2, X_1])
        X = Activation('elu')(X)
        X = BatchNormalization()(X)
        X = Dropout(rate)(X)
        return X

    def bi_LSTM(X, complexity, rate=0.2, regularizer=0):
        X = tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(int(complexity/2), return_sequences=True))(X)
        X = tf.keras.layers.BatchNormalization()(X)
        X = tf.keras.layers.Dropout(rate)(X)
        return X

    def dense_layer(X, complexity, rate=0.2, regularizer=0):
        X = tf.keras.layers.Dense(int(complexity))(X)
        X = tf.keras.layers.Activation('elu')(X)
        X = tf.keras.layers.BatchNormalization()(X)
        X = tf.keras.layers.Dropout(rate)(X)
        return X

    def basic_sentence_vectorizer():
        rate = 0.20
        complexity = 300
        inp = Input(shape = (data_generator.target_len, data_generator.embedding_size))

        X = inp
        X = inception_convolutional_layer(X, complexity)
        X = inception_convolutional_layer(X, complexity)
        X = inception_convolutional_layer(X, complexity)
        X = tf.keras.layers.MaxPooling1D(pool_size=2)(X)
        X = inception_convolutional_layer(X, complexity)
        X = tf.keras.layers.MaxPooling1D(pool_size=2)(X)
        X = inception_convolutional_layer(X, complexity)
        X = tf.keras.layers.MaxPooling1D(pool_size=2)(X)

        R = inp
        R = bi_LSTM(R, complexity)
        R = bi_LSTM(R, complexity/2)
        attention_probs = tf.keras.layers.Dense(int(complexity/2), activation='sigmoid', name='attention_probs')(R)
        R = multiply([R, attention_probs], name='attention_mul')
        R = Dropout(rate)(R)
        R = MaxPooling1D(pool_size=2)(R)
        R = inception_convolutional_layer(R, complexity)
        R = MaxPooling1D(pool_size=2)(R)
        R = inception_convolutional_layer(R, complexity)
        R = MaxPooling1D(pool_size=2)(R)

        X = Concatenate(axis=-1)([X, R])
        X = Flatten()(X)
        X = BatchNormalization()(X)
        X = Dropout(rate)(X)

        X = dense_layer(X, complexity)
        X = dense_layer(X, complexity)
        X = dense_layer(X, complexity)

        X = Dense(sentence_embeding_size, activation='sigmoid')(X)
        vectorizer = Model(inputs=inp, outputs=X)
        return vectorizer

    inp_anchor = Input(shape = (data_generator.target_len, data_generator.embedding_size))
    inp_positive = Input(shape = (data_generator.target_len, data_generator.embedding_size))
    inp_negative = Input(shape = (data_generator.target_len, data_generator.embedding_size))

    embedder = basic_sentence_vectorizer()

    anchor = embedder(inp_anchor)
    positive = embedder(inp_positive)
    negative = embedder(inp_negative)

    output = Concatenate(axis=1)([anchor, positive, negative])

    model = Model(inputs=[inp_anchor, inp_positive, inp_negative], outputs=output)
    model.compile(optimizer='adagrad', loss=lossless_triplet_loss)
    model.summary()
    return model, embedder

data_generator = TripletDataGeneratorEmbedings(target_len=20, batch_size=32, batches_per_epoch=10000)
model, embedder = models_builder(data_generator)
get_similarity_values = similarity_values_wrapper(embedder.predict, data_generator.vectorize)

zeros = np.zeros((data_generator.batch_size, 1, 1))
new_result = -10e5
for i in tqdm(range(1000)):
    if i%3==0:
        previous_result = new_result
        new_result = evaluate(get_similarity_values, 'triplet loss embeding')
        new_result = parse_result(new_result)
        print(i, new_result)
        if new_result < previous_result and i>20:
            break
    for a, p, n in data_generator:
        model.train_on_batch([a, p, n], zeros)

0 283.9
3 334.2
6 218.1
9 219.6
12 262.8
15 282.4
18 289.7
21 274.9


plot_results()

png


Итоги


Можно было предсказать, что победителями будут модели ELMO т.к. они были созданы для векторизации предложений. Их можно смело использовать, когда вам нужно быстро извлечь фичи из текста.


Лично меня приятно удивил BOW и среднее по эмбедингам. Даже без учёта порядка слов, они смогли поставить предложения из одной темы рядом.


Был разочарован автоэнкодерами. Сразу после инициализации результат лучше, чем после обучения. Не могу сказать в чём проблема, скорее всего автоэнкодер не может сжать всё предложение правильно и начинает предсказывать нули. Если у вас будут идеи по улучшению, то жду в комментариях.


Мой личный фаворит Triplet loss на embedings тоже не дал выдающегося результата. Думаю, что он раскроет свой потенциал на моделях в 100 раз больше по размеру и с обучением в течении нескольких месяцев.


Два метода: BOW с леммами без стоп слов и среднее с весами tf-idf хоть и не дают выдающихся средних результатов, но для некоторых предложений дают очень и очень хороший результат. Поэтому, для этих методов, всё должно зависеть от данных.


Вероятно, что со временем будет и Часть 3, если наберу достаточное количество идей.