Автор: Александр Старостин
Авария на Чернобыльской атомной электростанции, произошедшая в 1 час 23 минуты 47 секунд 26 апреля 1986 года, стала одной из крупнейших техногенных катастроф в истории человечества. Порядка 115 тысяч человек было выселено из зоны отчуждения. Более 600 тысяч человек приняли участие в ликвидации аварии. Загрязнено более 200 тысяч квадратных километров, из оборота были выведены 5 миллионов гектаров земель. Значительному загрязнению подверглись территории Украины, Белоруссии (по некоторым данным, загрязнению подверглось 20% площади этой страны), России. Кроме того, чернобыльская радиация была обнаружена в северной и западной Европе, а также у берегов Северной Америки. Масштабы аварии повергают в шок.
Записано множество воспоминаний, издано огромное количество книг, многие из них описывают чуть ли не поминутно последний день четвёртого энергоблока ЧАЭС. И тем не менее далеко не все готовы изучать или систематизировать огромный объём информации о том, что же происходило в те жуткие весенние дни, а также на протяжении следующих нескольких лет. Прошло уже 35 лет с момента аварии, а потому мне кажется, что стоит собрать всю имеющуюся информацию в едином цикле, дабы позволить читателю ознакомиться с хронологией тех уже почти забытых событий, а также с их контекстом.
Это первая часть цикла, в которой описывается устройство, принцип работы и особенности внедрения реакторов "чернобыльского типа".
Кратко о цепной атомной реакции
И ядерное оружие, и атомная энергетика базируются на цепной ядерной реакции деления. Бывает ещё ядерная реакция синтеза, но о ней в другой раз.
Итак, в силу своих свойств ряд тяжёлых элементов стремится к радиоактивному распаду, то есть изменению состава или внутреннего строения атомного ядра. Для выработки энергии необходимо, чтобы при распаде производилось больше энергии, чем раньше. При распаде ядро испускает некоторое количество нейтронов, которые при этом получают кинетическую энергию и летят в разные стороны. При этом нейтроны могут выделяться как сразу после начала деления (мгновенные нейтроны), так и с задержкой от нескольких миллисекунд до нескольких секунд (запаздывающие нейтроны). Как только они сталкиваются с другим ядром, происходит инициация реакции деления, и ядро испускает нейтроны.
Важно, чтобы эффективный коэффициент размножения нейтронов (проще говоря, количество нейтронов, вызывающих новую реакцию деления, отделяющихся за один акт деления ядра) был больше или равен единице, иначе наша реакция затухнет. Несмотря на малую долю в общем количестве выделяемых нейтронов (менее 1%), запаздывающие нейтроны позволяют существенно продлить время жизни нейтронов одного поколения, позволяя управлять цепной реакцией. Состояние, при котором коэффициент равен единице, называется критическим. Соответственно, если значение коэффициента <1, то состояние подкритичное, а если значение коэффициента >1, то состояние надкритичное. В надкритичном состоянии мощность реакции возрастает экспоненциально, то есть скорость роста мощности тем выше, чем выше мощность. Для ядерного оружия это хорошо, а вот для ядерного реактора – не очень, его рост мощности нужно регулировать, не давая достигнуть слишком высоких значений мощности. Ясное дело, что работы по постановке ядерной реакции под контроль были почти столь же приоритетны, как и работы по достижению максимально быстрого роста мощности и достижению максимума мощности.
Краткая история мирного атома в СССР
Первая в мире атомная электростанция была пущена в 1954 году в городе Обнинске Калужской области. Она успешно и безаварийно проработала вплоть до 29 апреля 2002 года, то есть 48 лет (на 30 лет больше запланированного). Реактор вобрал в себя все имевшиеся на тот момент наработки в области создания и использования реакторов двойного назначения. Например, на заводе Маяк реактор не только производил оружейный плутоний, но также электроэнергию и тепло для близлежащих городов. АМ-1 (Атом Мирный – именно такой индекс получил реактор на станции) представлял собой уран-графитовый реактор с водой в качестве охладителя и теплоносителя. Электрическая мощность реактора составляла 5 МВт
Изначально предполагалось построить несколько различных типов экспериментальных реакторов, которые должны были в будущем развиться в реакторы для различных нужд, в том числе для подводных лодок, кораблей и судов. Конкретно АМ-1 для этих целей не подошёл - слишком уж громоздкий из-за схемы расположения тепловыделяющих элементов в графитовой кладке.
Спустя 10 лет в работу были пущены реакторы типа АМБ (Атом Мирный Большой) в составе Белоярской АЭС. Это уже были реакторы электрической мощностью 100 МВт. В целом реакторы показали себя не очень надёжными, на всём протяжении их эксплуатации неоднократно происходили различные аварии, причём нередко – достаточно серьёзные. Например, в течение первых десяти лет эксплуатации не один раз происходило разрушение тепловыделяющих сборок на первом энергоблоке. Тем не менее, первый и второй блок доработали до полной выработки ресурса, после чего были выведены из эксплуатации. На данный момент ведётся разборка этих реакторов. Сейчас на Белоярской АЭС эксплуатируются два реактора на быстрых нейтронах.
Одновременно с запуском в эксплуатацию БАЭС началось проектирование нового мощного реактора канального типа. Работы велись в Научно-исследовательском и Конструкторском Институте ЭнергоТехники (НИКИЭТ) под руководством академика Николая Антоновича Доллежаля. Научной частью заведовал Институт Атомной Энергии (ИАЭ) им. Курчатова (директор – академик Анатолий Петрович Александров). Вообще, работа в области атомной энергетики в частности и атомной промышленности велась и управлялась ведущими советскими учёными. Тот же Александров в 1975 году стал президентом Академии наук СССР.
Анатомия гиганта
Что же представлял из себя новый реактор, получивший поначалу обозначение Э-7? Театр начинается с вешалки, а реактор – с тепловыделяющего элемента (ТВЭЛ). ТВЭЛ – это трубка из циркониевого сплава, толщина которой 0.9 мм, а диаметр – 13.6 мм. Оставшиеся 11.5 мм занимают спрессованные таблетки диоксида урана UO2. Изначально степень обогащения урана-235 составляла 2%, однако по мере модернизации реакторов её увеличивали. 18 таких ТВЭЛов объединены в тепловыделяющую сборку (ТВС). Внутри неё помимо самих ТВЭЛов находится несущий стержень из оксида ниобия NbO2, крепёжные детали из циркониевого сплава, а также каналы для теплоносителя, то есть воды. Высота одной сборки – 3.5 метра. Последовательное соединение двух ТВС называется тепловыделяющей кассетой (ТВК), её высота – 7 метров. Высота ТВК соответствует высоте всей активной зоны.
Сама активная зона представляет из себя графитовую кладку, состоящую из графитовых колонн. Каждая колонна собрана из прямоугольных блоков, длина и ширина которых составляет по 250 мм, а высота может составлять 200, 300, 500 или 600 мм. Всего колонн 2488, в каждой просверлен канал диаметром 114 мм. В этом канале может размещаться одна из 1693 топливных кассет либо один из 179 стержней Системы управления и защиты реактора (СУЗ). Остальные колонны являются боковыми отражателями нейтронов, защищающими окружающую среду от этих самых нейтронов. Размеры кладки: эквивалентный диаметр – 13.8 метра, из которых на активную зону приходится 11.8 метра, а толщина отражателя – 1 метр; высота кладки – 8 метров, из которых 7 – активная зона, а ещё по полметра сверху и снизу – отражатель. Благодаря такой схеме реактор и получил наименование РБМК – Реактор Большой Мощности Канальный.
Всё это добро уютно расположилось в шахте размерами 21.6х21.6х25.5 метров. В самом низу шахты находится бетонное основание. На нём покоится крестообразная металлоконструкция (схема С), соединяющая бетонное основание с нижней плитой реактора (схемой ОР). Толщина этой плиты – 2 метра, диаметр – 14.5 метров. Она состоит из цилиндрической обечайки, заполненной серпентинитом и проходками для топливных каналов и каналов управления, а также двух листов, в которые вварены герметично эти каналы.
Сверху расположена аналогичная по конструкции плита (схема Е), только её размеры иные – толщина 3 метра, диаметр – 17.5 метров. Она установлена на кольцевом баке с водой (схема Л), исполняющем роль боковой биологической защиты. Внешний диаметр бака – 19 метров, а внутренний на высоте 11 метров – 16.6 метров. Бак от бетона боковых стен отделяет засыпка песка. Между внутренней стенкой и активной зоной находится герметичный кожух реактора, имеющий также обозначение «схема КЖ» (металлопрокат, толщина – 16 мм), соединяющий верхнюю и нижнюю плиты. Между кожухом и внутренней стенкой бака присутствует полость, заполненная азотом под давлением более высоким, чем давление азотно-гелиевой смеси внутри кожуха. Таким образом, исключается утечка газа из полости реактора. Азотно-гелиевая смесь предотвращает выгорание гелия.
На полу реакторного зала лежит плитный настил, который вместе с дополнительной биологической защитой (схема Г) обеспечивает высокий общий уровень биологической защиты. По этому настилу можно ходить во время работы реактора, он же обеспечивает перегрузку (то есть замену топлива) реактора. Такая конструкция реактора позволяет перегружать тепловыделяющие кассеты без остановки реактора с помощью разгрузочно-загрузочной машины.
Итак, как же работает реактор РБМК? С помощью главных циркуляционных насосов (ГЦН) вода через трубопроводы подаётся непосредственно в ТВК. В них за счёт повышенного давления (7 МПа или 70 атмосфер) температура кипения воды повышается до 284 градусов по Цельсию. Проходя через них, она нагревается и частично испаряется. Сверху (вода подаётся в активную зону снизу) находятся трубопроводы, подводящие образовавшуюся пароводяную смесь к барабан-сепараторам. Их задача – отделить пар, содержание которого в смеси в среднем 14.5% от воды. Пар идёт на турбины, а вода снова подаётся в реактор. Таким образом, реактор РБМК является одноконтурным по теплоносителю.
Однако на деле не всё так однозначно, так как на самом деле структура единственного контура РБМК напоминает восьмёрку. Дело в том, что в верхней части этой восьмёрки (нижняя часть — это контур многократной принудительной циркуляции (КМПЦ), его я только что и описал) есть ещё ряд систем. Этот ряд включает в себя турбину, генератор, конденсатор, насос и барабан-сепаратор. Пришедшая из реактора в барабан-сепаратор пароводяная смесь разделяется на воду и пар. Пар температурой 284 градуса под давлением в 7 МПа приходит на турбину и вращает её, преобразуя тепловую энергию в кинетическую. Эту энергию турбина передаёт на генератор, вырабатывающий электроэнергию. Из турбины сильно охладившийся пар (до 30 градусов при давлении в 0.004 МПа или 0.04 атмосферы) попадает в конденсатор. Там пар передаёт свою тепловую энергию воде, забираемой из пруда-охладителя станции. На выходе из конденсатора мы получаем воду, с параметрами близким к параметрам пара, которая является "холодным" теплоносителем для второго теплового контура. Эта вода, пройдя через несколько вспомогательных устройств, становится питательной водой и с помощью питательного насоса подается в барабан-сепаратор. Там она смешивается с водой из пароводяной смеси, пришедшей из активной зоны, после чего уходит в реактор. Так замыкается восьмёрка.
Общая тепловая мощность реактора РБМК-1000 – 3200 МВт, из которых только 1000 МВт – электрическая мощность, остальное тратится на обогрев атмосферы и пруда-охладителя. На случай, если нужно уменьшить мощность, заглушить реактор или же что-то пойдёт не так, предусмотрен целый ряд систем защиты, ведущую роль в котором играют Стержни Управления и Защиты (СУЗ), запомните их, они нам вспомнятся ещё не раз. В первых реакторах стержней было 179, позже их стало 211. По своему назначению они делятся на стержни аварийной защиты (24 штуки), стержни автоматического регулирования (12), стержни локального автоматического регулирования (12), стержни ручного регулирования (131) и 32 укороченных стержня-поглотителя (УСП), предназначенные для локального регулирования мощности (появились после аварии на ЛАЭС в 1975 году). При необходимости, стержни вводятся в активную зону или выводятся из неё, тем самым уменьшая или увеличивая мощность соответственно. Введение всех стержней глушит реактор. Все стержни за исключением УСП, вводятся в реактор сверху.
Что из себя по конструкции представлял стержень-поглотитель реактора РБМК? При полностью выведенном из реактора стержне в активной зоне оставался графитовый вытеснитель длиной 4.5 м, а также по 1.25 м воды сверху и снизу. При подаче сигнала на введение в активную зону вытеснитель вытесняет воду снизу и выходит из зоны, а его место занимает соединённый с ним «телескопом» стержень-поглотитель из бора. Его задача – поглотить нейтроны, инициирующие цепную ядерную реакцию.
Отличий в конструкции РБМК от конструкции другого широко распространённого в России реактора типа ВВЭР много, но ключевых два. Во-первых, из-за циклопических размеров РБМК невозможно «запаковать» в герметичный корпус, который бы защитил окружающую среду в случае взрыва реактора. Во-вторых, в реакторе типа ВВЭР два герметичных контура теплоносителя, которые изолированы друг от друга. Первый – вода под высоким давлением, идущая непосредственно в активную зону. Там она нагревается и идёт в теплообменник, передавая свою тепловую энергию воде второго контура, которая в виде пара уже вращает турбину.
В принципе, реактор ВВЭР безопаснее, чем РБМК, однако РБМК давал весьма заметные экономические выгоды. Во-первых, в нём можно использовать менее обогащённое топливо (на ранних этапах считалось, что канальный реактор спокойно может работать на топливе со степенью обогащения 2%, в то время как корпусный требовал степени обогащения 4-5%). Более того, РБМК может работать на отработанном топливе реактора ВВЭР. При этом выгорание топлива в РБМК более равномерное, то есть реактор расходует его более экономно. Во-вторых, как уже говорилось, в РБМК можно менять топливные кассеты без остановки реактора, в то время как для перегрузки топлива реактор типа ВВЭР подвергается разгерметизации корпуса, что сопряжено с большим объёмом работы. В-третьих, при всех своих огромных размерах РБМК проще в строительстве, так как не требует трудоёмкого создания герметичного корпуса, что облегчает как производство, так и установку реактора на месте.
РБМК распространяется
Строительство первой атомной станции, оснащённой реактором РБМК-1000 (то есть Реактор Большой Мощности Канальный электрической мощностью 1000 МВт) началось в 1967 году в 4 км от посёлка Сосновый бор, что в 70 км от исторического центра Санкт-Петербурга. В 1974 году в эксплуатацию ввели первый энергоблок, спустя два года – второй. Здесь нужно отметить, что реально реактор подключают к сети раньше, чем официально вводят в эксплуатацию.
И первая очередь ЛАЭС «порадовала» своих создателей ещё до этой даты – зимой 1974 года, с разницей в месяц, произошло два серьёзных инцидента – взрыв водорода в газгольдере, где выдерживались газообразные радиоактивные отходы, а также разрыв промежуточного контура с утечкой высокоактивной воды. В результате погибли три человека. Однако это были лишь первые звоночки, а первый гром грянул 30 ноября 1975 года. Подробнее об этой аварии мы поговорим позже, а пока скажем лишь, что результатом аварии стало разрушение одного топливного канала, а общее загрязнение составило примерно 1.5 млн Кюри, что, мягко говоря, немало.
После этого реакторы РБМК были дооснащены дополнительными поглощающими стержнями (добавилось 32 укороченных стрежня), целым рядом систем, направленных на повышение безопасности реактора (например, системой аварийного охлаждения реактора (САОР), системой локальной автоматической защиты (ЛАЗ) и системой локального автоматического регулирования мощности реактора (ЛАР)), повысили степень обогащения урана до 2.4%, а также были внесены множественные уточнения в инструкции персонала и проекты будущих энергоблоков.
От аварии, аналогичной по масштабам чернобыльской, ЛАЭС спасли умелые действия персонала. Сама станция находилась в ведении министерства среднего машиностроения, которое в СССР занималось атомным оружием, атомной промышленностью и атомной энергетикой. Однако все последующие станции строились для нужд министерства энергетики и электрификации. Там всё было куда хуже и с персоналом, и с заводами. Вспоминает Анатолий Дятлов:
Ленинградская АЭС, подведомственная Министерству среднего машиностроения, проектировалась его организациями, под его заводы, оснащенные современным оборудованием. Курская и Чернобыльская станции принадлежали Министерству энергетики и электрификации. В правительственном Постановлении было указано, что нестандартное оборудование для четырех блоков первых очередей этих станций будет изготовлено теми же заводами, что и для Ленинградской. Но для Минсредмаша правительственное Постановление не указ даже и в то время, когда еще немного слушались правительства. Говорят, у вас есть свои заводы, вот и делайте, чертежи дадим. Был я на некоторых заводах вспомогательного оборудования Минэнерго — оснащение на уровне плохоньких мастерских. Поручать им изготовление оборудования для реакторного цеха все равно, что плотника заставлять делать работу столяра. Так и мучились с изготовлением на каждый блок. Что-то удавалось сделать, чего-то так и не было. Характерно, вот уж поистине застой, Минэнерго за несколько лет так ни одного своего завода и не модернизировало, чтобы был способен изготавливать не столь уж сложное оборудование.
Между тем, продолжалось строительство энергоблоков с реакторами РБМК-1000 первого поколения. К ним также относились 1 и 2 блоки Курской (начало строительства – 1972 и 1973 года, ввод в эксплуатацию – 1977 и 1979 года соответственно) и Чернобыльской АЭС (начало строительства – 1970 и 1973, ввод в эксплуатацию – 1978 и 1979 года соответственно). А дальше началось проектирование и строительство энергоблоков с реакторами РБМК второго поколения.
В чём отличия от поколений 1 и 1+? Во-первых, увеличенный барабан-сепаратор. Во-вторых, трёхканальная САОР, которая теперь снабжала аварийный реактор водой не только из гидробаллонов, но и через питательные насосы. В-третьих, теперь для локализации радиоактивных веществ, выброс которых нельзя было допустить в атмосферу в случае аварии, были предусмотрены двухэтажные бассейны-локализаторы, которые должны были эти радиоактивные вещества аккумулировать. Ну и наконец, теперь реакторные отделения строились дубль-блоком, иными словами, они составляли одно здание, хотя блоки и были разделены. Ранее каждый реактор строился в своём здании.
К реакторам нового типа с повышенным уровнем безопасности относились энергоблоки 3 и 4 Курской АЭС (начало строительства – 1978 и 1981 года, ввод в эксплуатацию – 1984 и 1986 соответственно), 3 и 4 Чернобыльской АЭС (начало строительства – 1972 и 1971 года, ввод в эксплуатацию – 1982 и 1984 соответственно), 1 и 2 Смоленской АЭС (начало строительства – 1975 и 1976 года, ввод в эксплуатацию – 1983 и 1985 соответственно). Кроме того, сюда же относят и 3 и 4 энергоблоки Ленинградской АЭС (начало строительства – 1973 и 1975 года, ввод в эксплуатацию – 1980 и 1981 соответственно), но они были промежуточными, отличаясь устройством ряда систем как от более ранних, так и более поздних энергоблоков.
Отдельно следует упомянуть об Игналинской АЭС. Её оснастили модифицированной версией реактора – РБМК-1500. Как можно догадаться из индекса, электрическая мощность данного реактора составляла 1500 МВт. Достигалось увеличение путём интенсификации теплообмена в ТВК при сохранении размеров реактора. Однако реальная мощность составляла 1300 МВт, так как на номинале и повышенной мощности происходило неравномерное выгорание топлива и растрескивание оболочек ТВЭлов. До аварии на ЧАЭС в 1986 году успели сдать в эксплуатацию один блок (начало строительства – 1975, ввод в эксплуатацию – 1984 год). Ещё один блок должны были пустить в 1986 году, однако из-за аварии на ЧАЭС пуск и ввод в эксплуатацию перенесли на год (начало строительства – 1978, ввод в эксплуатацию – 1987 год). Также после аварии заработал третий блок Смоленской АЭС с реактором РБМК-1000 (начало строительства – 1984, ввод в эксплуатацию – 1990 год). Все остальные достраивавшиеся блоки (КАЭС-5 (строительство остановлено в 2012 на степени готовности 85%), ЧАЭС-5 и 6 (строительство остановлено в 1986 году), САЭС-4 (строительство остановлено в 1993 году), ИАЭС-3 (строительство остановлено в 1988 году)) были законсервированы.
В дальнейшем планировалось ещё увеличить мощность реактора за счёт увеличения диаметра топливных каналов и других ухищрений с топливными кассетами (РБМК-2000 и РБМК-3600), использования перегретого пара (проекты РБМКП-2400 и РБМКП-4800). Кроме того, существовал более поздний проект МКЭР, который предполагалось оснащать двойной защитной оболочкой, четырёхконтурной системой принудительной циркуляции воды против двухконтурной у РБМК, а также рядом новшеств, направленных на снижение расхода топлива и повышение КПД. Тем не менее, ни один из этих проектов дальнейшего развития не получил.
Подводя итог. Реактор большой мощности канальный электрической мощностью 1000 МВт (или РБМК-1000) представляет из себя циклопическое сооружение, которое массово распространилось по АЭС Советского союза и на протяжении многих лет являлось флагманом отечественной атомной индустрии. При этом большинство энергоблоков с этим реактором до сих эксплуатируются, хоть и с условием постоянной модернизации для повышения безопасности. О недостатках машины (в том числе и критических) мы поговорим в одной из следующих частей цикла (причём ближе к концу). А в следующей части — о ЧАЭС, Припяти и Чернобыльском крае.
Автор: Александр Старостин
slavius
«Авария — это результат крайне маловероятного сочетания событий». Как судили виновных в аварии на ЧАЭС
Брюханов: «Авария — это результат крайне маловероятного сочетания событий»
Суд приговорил всех обвиняемых к мерам, которые запрашивал прокурор. Вот какие сроки получили сотрудники ЧАЭС:
Брюханов — 10 лет лишения свободы;
Фомин — 10 лет;
Дятлов — 10 лет;
Рогожкин — 5 лет;
Коваленко — 3 года:
Лаушкин — 2 года.
Как установлено по делу, установки с реакторами РБМК-1000 «имеют некоторое несовершенство конструкции, уголовное дело в отношении лиц, не принявших своевременных мер к совершенствованию их конструкции, органами следствия выделено в отдельное производство».
Catx2 Автор
Всё это, как и ход процесса будет освещено в одной из последующих частей
Ion_Storm
В Сети есть протоколы судебных заседаний. Там всё очень интересно. Например, ту статью, что инкриминировали обвиняемым "(«Нарушения требований правил техники безопасности на взрывоопасных предприятиях, что повлекло за собой человеческие жертвы и другие тяжелые последствия»") не могли к ним примерять, поскольку, в тот момент, в перечень взрывоопасных предприятий АЭС не входили. Дятлов в своих показаниях демонстрировал документы по программе испытаний, согласно которым они действовали, заверенными на уровне министерства и КБ. Он настаивал, что все шаги они выполняли в строгом соответствии с инструкцией. По сути, смогли доказать только то, что с его указания была внесена внесена модификация в диспетчерский пульт для автоматизации отключения (не помню какой именно части), но, как он утверждал, всё то, что делала автоматика, по инструкции всё равно должно было быть выполнено, но в ручном режиме.
Когда-то давно в «Юном Технике» рассказывая о причинах аварии на ЧС юным технарям вкладывали в голову совсем другую информацию. Там описывался эксперимент, который якобы ночью решили провести сами безответственные сотрудники станции и всё пошло не так. Мне в том самом юном возрасте было категорически не понятно, как на таком серьезном предприятии, кто-то может самовольно крутить ручки? Мне вон, даже телевизор включать без разрешения нельзя, а дяди такое творили? Вот так работает пропаганда.
micbsv
Реально, Дятлову надо было дать высшую меру, авария — его рук дело. Вина остальных в том, что не помешали и не предотвратили преступные действия этого идиота.
Ion_Storm
Возможно вы сможете аргументировать применение исключительной меры к Дятлову? Честно говоря, когда я первый раз читал про Чернобыльскую катастрофу (опять же в подаче «эксперимент, который не удался») у меня в голове комиссар тоже поглаживал маузер. Сколько ущерба, сколько пострадавших, доэкспериментировались блин!!! Но после погружения в тему, после прочтения дневников Легасова, протоколов заседаний и описание фактов предшествующих аварии (не мнений, а фактов), я очень засомневался относительно роли Дятлова в качестве главного виновника аварии. Исключительная мера применима (не применима, но всё же) в том случае, когда вина человека исключительная. Простите за тавтологию, но это можно считать, что исключив конкретного человека, его действие, и событий не наступит. В аварии на ЧС всё не так однозначно, и гораздо более сложнее, чем это показано в большинстве источников. Сейчас я отношусь Дятлову как к новому начальнику ТЭЦ в Норильске, в зоне ответственности которого произошел разлив соляры. С одной стороны виноват, с другой стороны все предпосылки для аварии были созданы на другом уровне и при сохранении их, авария всё равно бы произошла, возможно только в другом месте и с другими последствиями.
Buhram
Учитывая, что и ранее, при обычном глушении реактора, появлялись аварийные сигналы превышения мощности и скорости нарастания мощности (считали что они ошибочные, реактор ведь глушится), авария, рано или поздно, произошла бы.
0serg
Ну предпосылки конечно были до Дятлова, однако в целом его позицию тоже трудно оправдать. Реакторщики написали инструкцию о том как их реактор следовало использовать, эксплуатанты почитали — и сказали «не, ну так слишком неудобно и вообще плохо получается» и стали делать по своему. Ну а Дятлов соответственно так и аргументировал свою позицию — всегда мол так делали, а как иначе-то? Отступать от правил никто особо не боялся поскольку реакторы же не взрываются, а на всякий случай есть кнопка глушения. Попробовали делать по своему раз, попробовали два — вроде работает, привыкли, стали пользоваться. Тут и вылезает роль Дятлова который за все происходящее отвечал но вместо того чтобы бить тревогу по поводу несоответствия реальных процедур документации подгонял народ работать по упрощенным схемам.
Ion_Storm
Ни дня не работал в атомной промышленности, но в армии исполнял обязанности командира роты. В том числе, отвечал за технику и вооружение. У меня сложилось твердое убеждение, что инструкции и наставления пишутся таким образом, чтобы при любых косяках можно было все спереть на конкретного исполнителя. Сидят дяди в КБ и на всех этих инструкциях получают чины и звания, а как ты их мудрые мысли со своей материально-технической базой выполнять будешь — им глубоко фиолетово. «Затяжку крепления производить с усилием в диапазоне..» и пофиг, что у тебя в комплекте динамометрического ключа отродясь не водилось. Комбату и зампотеху батальона тоже начхать, те только требовать горазды. «Чтобы к утру машина была на ходу, что хочешь делай» (конечно говорят они словами из другого лексикона, передаю суть). Если что пошло не так — все не при чем, это лейтенант дурак, инструкции не читает, руки кривые.
0serg
Ну, а если затяжку следует выполнять с определенным усилием, то что проектантам еще писать-то в инструкции? Проследить за наличием динамометрического ключа они при всем желании не могут. При этом в современных автосервисах такие ключи есть и ими пользуются, т.е. проблема возникает на уровне человека который должен был обеспечить наличие ключа, этого не сделал, но при этом требует чтобы к утру машина была на ходу. В случае с ЧАЭС этим человеком собственно и был Дятлов.
Ion_Storm
Я бы сказал, что это системная проблема. Похожую же ситуацию я наблюдал в РЖД. С одной стороны с тебя требуют план любой ценой, с другой сторны соблюдения всех (зачастуя противоречивых) ТУ и ТБ на производстве. В итоге руководитель находится между молотом и наковальней. Соблюсти всё не возможно, в случае ЧП обязательно найдется бумажа по которой ты должен был что-то обеспечить, что-то исключить и вообще предусмотреть. Помните же, что такое итальянская забастовка — это всего лишь тщательное исполение всех пунктов всех инструкций, процесс при этом оказывается полностью парализованным.
anonymous
Вина Дятлова не была полностью доказана? То что он знал о наличии проблем и не докладывал руководству? Или специально умалчивал? Или говорил, но только лично, без официальных бумаг?
Мне просто интересно, а материалы дела очень объемные. Хотелось бы в двух словах от знающего человека.
Ion_Storm
Не хочу вводить вас в заблуждение, я не знающий человек, скорее интересующийся. На мой взгляд, сам процесс носил характер показательного, была авария с человеческими жертвами, кого-то надо было наказать. Не берусь брать на себя ответственность судьи, но как мне кажется на скамье подсудимых не хватало тех, кто разрабатывал программу испытаний (тут зачеркнуто, там исправлено, в третьем рыба завернута), кто отвечал за ГО и ЧС (проведение демонстраций в зоне выпадения осадков), тех кто не обеспечил станцию дозиметрами и многими другими должностными лицами. Что касается проблем — они есть на любом производстве, тут нужно четко разделять общие проблемы и проблемы ставшие причинами аварии. Про статью которая вменялась Дятлову я уже говорил выше, АЭС, на момент аварии, в список взрывоопасных предприятий не входила.
Denev
Ion_Storm
Номер по памяти, конечно, не назову. К сожалению, номера ЮТ, в основном, выложены в формате DjVu, что исключает их индексирование поисковыми машинами и резко ограничивает возможность быстрого поиска. При случае, скачаю, поищу, отпишусь.
organeesm
Думаю, то был не ЮТ, а «Наука и жизнь» 12 — 1989
Denev
Спасибо
Ion_Storm
Опечатка. не протоколы, а стенограмма судебных заседаний.