Привет, Хабр. Делимся авторской статьей преподавателя OTUS Вадима Заигрина.
Apache Spark
Apache Spark – это распределенный фреймворк обработки данных, ставший де-факто стандартом в обработке больших данных.
Spark состоит из нескольких компонентов, в число, которых входит и библиотеки машинного обучения.
Spark ML предоставляет базовый набор инструментов машинного обучения:
Алгоритмы, такие как классификация, регрессия, кластеризация и совместная фильтрация.
Методы работы с признаками.
Конвейеры (pipelines).
Сохранение и загрузка моделей и конвейеров.
Утилиты: линейная алгебра, статистика, обработка данных и т.д.
По сравнению с другими библиотеками машинного обучения, такими как scikit-learn например, набор алгоритмов в Spark ML выглядит скромнее, но он содержит все основные методы. Кроме того, Spark ML позволяет добавлять свои методы и реализовывать недостающие алгоритмы.
Spark ML состоит из двух библиотек:
spark.ml – это библиотека машинного обучения, основанная на DataFrame API;
spark.mllib – на RDD API.
Начиная с версии 2.0 основной библиотекой является spark.ml, но библиотека spark.mllib содержит типы данных, используемые в библиотеке spark.ml
Оба варианта Spark ML хорошо описаны в документации. Но я не буду пересказывать документацию. Рассмотрим как работать со Spark ML на конкретном примере.
Загружаем Spark
Spark можно запустить в локальном режиме, без кластера. Это позволяет познакомится с API, посмотреть особенности работы с ним.
Spark работает на JVM. Поэтому для запуска заданий и разработки приложений на компьютере должен быть установлен JDK, путь к java должен находиться в переменной PATH, и должна быть установлена переменная JAVA_HOME.
Что запустить Spark в локальном режиме надо проделать следующее:
-
Cкачать дистрибутив Spark на свой компьютер: http://spark.apache.org/downloads.html
Из списка версий надо выбрать ту, которая используется у вас на работе. Если на работе Spark не используется, а есть потребность в его изучении, то лучше скачивать последнюю версию.
Помимо версии самого Spark есть выбор предоставляемых библиотек Hadoop. Так как мы собираемся запускать Spark локально, то вариант “Pre-built with user-provided Apache Hadoop” нам не подходит, так как в этом случае придётся скачивать и устанавливать ещё и библиотеки Hadoop. Надо выбрать один из “Pre-built for Apache Hadoop …”.
Распаковать архив, например в папку
/opt/spark
.-
При желании можно изменить параметры, установленные по-умолчанию. Они находятся в папке
conf
:log4j.properties – параметры логирования (Например, заменить INFO на WARN);
spark-defaults.conf – параметры spark-submit (Например, увеличить память драйвера).
Прописать переменную SPARK_HOME
Запускаем Spark
Прежде, чем писать и компилировать программу для Spark, желательно поработать с ним в интерактивном режиме (REPL).
Для этого есть несколько вариантов:
spark-shell (pyspark)Консольный Scala/Python REPL с настроенным Spark. Входит в дистрибутив Spark. Неудобен при длительной работе.
Apache ZeppelinСервис ноутбуков в браузере. Поддерживает большое количество интерпретаторов, включая Spark, Scala и Python. Удобен тем, что как и стандартный консольный REPL предоставляет настроенный Spark.
Apache LivyREST сервис для Spark. Позволяет запускать задания и работать интерактивно.
Apache ToreeЯдро для Jupyter Notebook для работы со Spark.
AlmondScala ядро для Jupyter. Поддерживает Spark.
JetBrains Big Data ToolsПлагин для IntelliJ IDEA, DataGrip и PyCharm IDE от JetBrains. Позволяет прямо из IDE работать с ноутбуками Zeppelin, предоставляет доступ к мониторингу Spark и Kafka, доступ к HDFS и т.п.
Лично я предпочитаю использовать Apache Zeppelin вместе с JetBrains Big Data Tools.
Задача машинного обучения
В качестве примера возьмём задачу предсказания оттока клиентов банка.
Описание задачи и набор данных находится на сайте Kaggle.
Этот набор данных состоит из 10 000 клиентов и содержит такие признаки, как возраст, зарплата, статус по состоянию здоровья, лимит кредитной карты, категорию кредитной карты и т.д., а также переменную Attrition_Flag
с признаком оттока (перестал ли клиент пользоваться услугами банка).
Мы решаем задачу бинарной классификации. Нам надо построить модель, предсказывающую к какой группе относится клиент.
Этапы ML
Из каких же этапов должен состоять проект ML?
Есть несколько методологий. Будем использовать CRISP-DM.
CRISP-DM
CRISP-DM (Cross-Industry Standard Process for Data Mining) — наиболее распространённая методология по исследованию данных.
Исследование данных по методологии CRISP-DM состоит из следующих фаз:
Понимание бизнес-целей (Business Understanding);
Понимание данных (Data Understanding);
Подготовка данных (Data Preparation);
Моделирование (Modeling);
Оценка (Evaluation);
Внедрение (Deployment).
Будем решать нашу задачу по этим шагам.
Понимание бизнес-целей
С бизнес-целями в нашем случае всё просто. Банк заинтересован в сохранении клиентов. Предсказав клиентов, которые относятся к группе, склонной к уходу из банка, можно сработать на опережение и предложить им выгодные условия, чтобы они остались клиентами банка.
Понимание данных
Давайте загрузим набор данных и посмотрим на него.
Данные находятся в файле в формате CSV. Загрузим его стандартным для Spark способом в переменную raw
типа DataFrame:
val raw = spark
.read
.option("header", "true")
.option("inferSchema", "true")
.csv(s"$basePath/data/BankChurners.csv")
Переменная basePath
содержит путь к рабочему каталогу этого проекта.
В описании этого набора сказано: “PLEASE IGNORE THE LAST 2 COLUMNS (NAIVE BAYES CLAS…)”. А первая колонка содержит уникальный идентификатор клиента, который для построения модели совершенно не нужен.
Подготовим список колонок, которые надо исключить из загруженного набора – это первая и две последние колонки. Получим список колонок из DataFrame, выделим последние два элемента и добавим первый.
val columns: Array[String] = raw.columns
val columnsLen: Int = columns.length
val colsToDrop: Array[String] = columns.slice(columnsLen - 2, columnsLen) :+ columns.head
Переменная colsToDrop
– это массив имён колонок, которые надо исключить из загруженного набора данных.
Для удаления колонок из DataFrame используется метод drop
, аргументами которого является одно или несколько названий колонок – аргументы переменной длины. Чтобы преобразовать массив в аргументы метода в Scala применяется конструкция array: _*
val df = raw.drop(colsToDrop: _*)
Итак, переменная df
типа DataFrame содержит исходный набор данных без первой и двух последних колонок. Полезно посмотреть на несколько первых записей этого набора:
df.show(5, truncate = false)
+-----------------+------------+------+---------------+---------------+--------------+---------------+-------------+--------------+------------------------+----------------------+---------------------+------------+-------------------+---------------+--------------------+---------------+--------------+-------------------+---------------------+
|Attrition_Flag |Customer_Age|Gender|Dependent_count|Education_Level|Marital_Status|Income_Category|Card_Category|Months_on_book|Total_Relationship_Count|Months_Inactive_12_mon|Contacts_Count_12_mon|Credit_Limit|Total_Revolving_Bal|Avg_Open_To_Buy|Total_Amt_Chng_Q4_Q1|Total_Trans_Amt|Total_Trans_Ct|Total_Ct_Chng_Q4_Q1|Avg_Utilization_Ratio|
+-----------------+------------+------+---------------+---------------+--------------+---------------+-------------+--------------+------------------------+----------------------+---------------------+------------+-------------------+---------------+--------------------+---------------+--------------+-------------------+---------------------+
|Existing Customer|45 |M |3 |High School |Married |$60K - $80K |Blue |39 |5 |1 |3 |12691.0 |777 |11914.0 |1.335 |1144 |42 |1.625 |0.061 |
|Existing Customer|49 |F |5 |Graduate |Single |Less than $40K |Blue |44 |6 |1 |2 |8256.0 |864 |7392.0 |1.541 |1291 |33 |3.714 |0.105 |
|Existing Customer|51 |M |3 |Graduate |Married |$80K - $120K |Blue |36 |4 |1 |0 |3418.0 |0 |3418.0 |2.594 |1887 |20 |2.333 |0.0 |
|Existing Customer|40 |F |4 |High School |Unknown |Less than $40K |Blue |34 |3 |4 |1 |3313.0 |2517 |796.0 |1.405 |1171 |20 |2.333 |0.76 |
|Existing Customer|40 |M |3 |Uneducated |Married |$60K - $80K |Blue |21 |5 |1 |0 |4716.0 |0 |4716.0 |2.175 |816 |28 |2.5 |0.0 |
+-----------------+------------+------+---------------+---------------+--------------+---------------+-------------+--------------+------------------------+----------------------+---------------------+------------+-------------------+---------------+--------------------+---------------+--------------+-------------------+---------------------+
only showing top 5 rows
Определяем типы колонок
Для понимания данных полезно узнать кого типа колонки есть в наборе данных.
Чаще всего для вывода схемы DataFrame используется метод printSchema
:
df.printSchema
root
|-- Attrition_Flag: string (nullable = true)
|-- Customer_Age: integer (nullable = true)
|-- Gender: string (nullable = true)
|-- Dependent_count: integer (nullable = true)
|-- Education_Level: string (nullable = true)
|-- Marital_Status: string (nullable = true)
|-- Income_Category: string (nullable = true)
|-- Card_Category: string (nullable = true)
|-- Months_on_book: integer (nullable = true)
|-- Total_Relationship_Count: integer (nullable = true)
|-- Months_Inactive_12_mon: integer (nullable = true)
|-- Contacts_Count_12_mon: integer (nullable = true)
|-- Credit_Limit: double (nullable = true)
|-- Total_Revolving_Bal: integer (nullable = true)
|-- Avg_Open_To_Buy: double (nullable = true)
|-- Total_Amt_Chng_Q4_Q1: double (nullable = true)
|-- Total_Trans_Amt: integer (nullable = true)
|-- Total_Trans_Ct: integer (nullable = true)
|-- Total_Ct_Chng_Q4_Q1: double (nullable = true)
|-- Avg_Utilization_Ratio: double (nullable = true)
Этот метод хорошо подходит для интерактивной работы, но для обработки результата лучше использовать метод dtypes
Выведем в удобном виде названия колонок и их тип:
df.dtypes.foreach { dt => println(f"${dt._1}%25s\t${dt._2}") }
Attrition_Flag StringType
Customer_Age IntegerType
Gender StringType
Dependent_count IntegerType
Education_Level StringType
Marital_Status StringType
Income_Category StringType
Card_Category StringType
Months_on_book IntegerType
Total_Relationship_Count IntegerType
Months_Inactive_12_mon IntegerType
Contacts_Count_12_mon IntegerType
Credit_Limit DoubleType
Total_Revolving_Bal IntegerType
Avg_Open_To_Buy DoubleType
Total_Amt_Chng_Q4_Q1 DoubleType
Total_Trans_Amt IntegerType
Total_Trans_Ct IntegerType
Total_Ct_Chng_Q4_Q1 DoubleType
Avg_Utilization_Ratio DoubleType
И посмотрим сколько колонок каждого типа:
df.dtypes.groupBy(_._2).mapValues(_.length).foreach(println)
(DoubleType,5)
(StringType,6)
(IntegerType,9)
Проверим числовые колонки
Выделим числовые колонки и применим к ним метод summary
. Этот метод вычисляет такие статистики как:
count
mean
stddev
min
max
arbitrary approximate percentiles specified as a percentage (e.g. 75%)
val numericColumns: Array[String] = df.dtypes.filter(!_._2.equals("StringType")).map(_._1)
df.select(numericColumns.map(col): _*).summary().show
+-------+-----------------+------------------+------------------+------------------------+----------------------+---------------------+-----------------+-------------------+-----------------+--------------------+-----------------+-----------------+-------------------+---------------------+
|summary| Customer_Age| Dependent_count| Months_on_book|Total_Relationship_Count|Months_Inactive_12_mon|Contacts_Count_12_mon| Credit_Limit|Total_Revolving_Bal| Avg_Open_To_Buy|Total_Amt_Chng_Q4_Q1| Total_Trans_Amt| Total_Trans_Ct|Total_Ct_Chng_Q4_Q1|Avg_Utilization_Ratio|
+-------+-----------------+------------------+------------------+------------------------+----------------------+---------------------+-----------------+-------------------+-----------------+--------------------+-----------------+-----------------+-------------------+---------------------+
| count| 10127| 10127| 10127| 10127| 10127| 10127| 10127| 10127| 10127| 10127| 10127| 10127| 10127| 10127|
| mean|46.32596030413745|2.3462032191172115|35.928409203120374| 3.8125802310654686| 2.3411671768539546| 2.4553174681544387|8631.953698034848| 1162.8140614199665|7469.139636614887| 0.7599406536980376|4404.086303939963|64.85869457884863| 0.7122223758269962| 0.2748935518909845|
| stddev|8.016814032549046| 1.29890834890379| 7.98641633087208| 1.55440786533883| 1.0106223994182844| 1.1062251426359249|9088.776650223148| 814.9873352357533|9090.685323679114| 0.2192067692307027|3397.129253557085|23.47257044923301|0.23808609133294137| 0.27569146925238736|
| min| 26| 0| 13| 1| 0| 0| 1438.3| 0| 3.0| 0.0| 510| 10| 0.0| 0.0|
| 25%| 41| 1| 31| 3| 2| 2| 2555.0| 357| 1322.0| 0.631| 2155| 45| 0.581| 0.022|
| 50%| 46| 2| 36| 4| 2| 2| 4549.0| 1276| 3472.0| 0.736| 3899| 67| 0.702| 0.175|
| 75%| 52| 3| 40| 5| 3| 3| 11067.0| 1784| 9857.0| 0.859| 4741| 81| 0.818| 0.503|
| max| 73| 5| 56| 6| 6| 6| 34516.0| 2517| 34516.0| 3.397| 18484| 139| 3.714| 0.999|
+-------+-----------------+------------------+------------------+------------------------+----------------------+---------------------+-----------------+-------------------+-----------------+--------------------+-----------------+-----------------+-------------------+---------------------+
Видно, что в данных нет пропусков и выбросов.
Теперь давайте посмотрим на значения колонки Customer_Age
df.groupBy($"Customer_Age").count().show(100)
JetBrains Big Data Tools позволяет представлять вывод в виде графиков.
Видно, что значение колонки Customer_Age
имеет практически нормальное распределение.
Целевая колонка
Колонка Attrition_Flag
содержит признак оттока в в виде текстового описания. Для моделирования надо привести его к числовому виду. Поэтому введём новую колонку target
, которая будет равна 0, когда значение Attrition_Flag
равно “Existing Customer”, и 1 в остальных случаях.
val dft = df.withColumn("target", when($"Attrition_Flag" === "Existing Customer", 0).otherwise(1))
dft
– новый DataFrame с целевой колонкой target
.
Проверка сбалансированности данных
Следующее, что надо сделать – проверить набор данных на сбалансированность классов.
Мы решаем задачу бинарной классификации, у нас два класса. Проверим количество записей в каждом классе.
dft.groupBy("target").count.show
+------+-----+
|target|count|
+------+-----+
| 1| 1627|
| 0| 8500|
+------+-----+
Есть несколько методов решения проблемы несбалансированных данных. Чаще всего применят undersampling
– уменьшение количества записей большего класса, и oversampling
– увеличение количества записей меньшего класса.
Данных у нас не очень много, поэтому будем использовать oversampling.
Oversampling
Выделим в отдельные переменные данные разных классов и сохраним количество записей в каждом классе.
val df1 = dft.filter($"target" === 1)
val df0 = dft.filter($"target" === 0)
val df1count = df1.count
val df0count = df0.count
Нужно увеличить количество записей в наборе df1 в df0count / df1count
раз:
val df1Over = df1
.withColumn("dummy", explode(lit((1 to (df0count / df1count).toInt).toArray)))
.drop("dummy")
Давайте рассмотрим это подробнее.
Конструкция (1 to (df0count / df1count).toInt).toArray
создаёт массив со значениями от 1 до (df0count / df1count)
(1 to (df0count / df1count).toInt).toArray
res77: Array[Int] = Array(1, 2, 3, 4, 5)
Функция lit
создаёт колонки с определённым значением. Мы добавляем колонку с именем dummy
, значением которой является массив:
df1
.withColumn("dummy", lit((1 to (df0count / df1count).toInt).toArray))
.select("Attrition_Flag", "Customer_Age", "dummy")
.show(10)
+-----------------+------------+---------------+
| Attrition_Flag|Customer_Age| dummy|
+-----------------+------------+---------------+
|Attrited Customer| 62|[1, 2, 3, 4, 5]|
|Attrited Customer| 66|[1, 2, 3, 4, 5]|
|Attrited Customer| 54|[1, 2, 3, 4, 5]|
|Attrited Customer| 56|[1, 2, 3, 4, 5]|
|Attrited Customer| 48|[1, 2, 3, 4, 5]|
|Attrited Customer| 55|[1, 2, 3, 4, 5]|
|Attrited Customer| 47|[1, 2, 3, 4, 5]|
|Attrited Customer| 53|[1, 2, 3, 4, 5]|
|Attrited Customer| 48|[1, 2, 3, 4, 5]|
|Attrited Customer| 59|[1, 2, 3, 4, 5]|
+-----------------+------------+---------------+
only showing top 10 rows
Функция explode
создаёт новую строку для каждого элемента массива:
df1
.withColumn("dummy", explode(lit((1 to (df0count / df1count).toInt).toArray)))
.select("Attrition_Flag", "Customer_Age", "dummy")
.show(10)
+-----------------+------------+-----+
| Attrition_Flag|Customer_Age|dummy|
+-----------------+------------+-----+
|Attrited Customer| 62| 1|
|Attrited Customer| 62| 2|
|Attrited Customer| 62| 3|
|Attrited Customer| 62| 4|
|Attrited Customer| 62| 5|
|Attrited Customer| 66| 1|
|Attrited Customer| 66| 2|
|Attrited Customer| 66| 3|
|Attrited Customer| 66| 4|
|Attrited Customer| 66| 5|
+-----------------+------------+-----+
only showing top 10 rows
Итак, df1Over – это набор, содержащий записи класса target = 1
, увеличенный в df0count / df1count
раз.
Объединим этот новый набор с набором записей второго класса и проверим сбалансированность исходного набора:
val data = df0.unionAll(df1Over)
data.groupBy("target").count.show
+------+-----+
|target|count|
+------+-----+
| 1| 8135|
| 0| 8500|
+------+-----+
DataFrame data – это сбалансированный набор данных, с которым мы будем дальше работать.
Подготовка данных (работа с признаками)
Для этапа подготовки данных в Spark ML есть следующие группы алгоритмов:
Extraction – извлечение объектов из “необработанных” данных;
Transformation – масштабирование, преобразование или изменение объектов;
Selection – выбор подмножества из большего набора объектов;
Locality Sensitive Hashing (LSH) – этот класс алгоритмов сочетает в себе аспекты преобразования признаков с другими алгоритмами.
Работают они похожим образом:
Создаём объект-преобразователь с нужными параметрами;
Применяем этот объект к исходному набору данных;
Получаем новый набор данных, с которым продолжаем работать.
Перейдём к работе с признаками нашего набора данных.
Проверим корреляции числовых признаков
Надо проверять корреляцию числовых признаков между собой и исключать признаки с высокой корреляцией.
Составим список всех пар числовых признаков:
val numericColumnsPairs = numericColumns.flatMap(f1 => numericColumns.map(f2 => (f1, f2)))
Переменная numericColumns
– это массив названий колонок с числовыми типами значений (целые или с плавающей точкой).
Список всех пар можно также получить таким способом:
for {
x <- numericColumns
y <- numericColumns
} yield (x, y)
Фактически, это разные способы записи одного и того же действия.
Проверить корреляцию в Spark можно двумя способами:
DataFrameStatFunctions – Статистические функции для DataFrame;
Correlation – API для корреляционных функций в MLlib.
Проверим корреляцию наших числовых признаков обоими способами.
ВАРИАНТ 1: DATAFRAMESTATFUNCTIONS
Составим список всех пар числовых признаков, уберём пары из одинаковых названий, отсортируем пары в лексиграфическом порядке, и оставим только уникальные комбинации пар:
val pairs = numericColumnsPairs
.filter { p => !p._1.equals(p._2) }
.map { p => if (p._1 < p._2) (p._1, p._2) else (p._2, p._1) }
.distinct
Для каждой пары применим статистическую функцию вычисления корреляции к сбалансированному набору данных и выделим пары с корреляцией больше 0.6:
val corr = pairs
.map { p => (p._1, p._2, data.stat.corr(p._1, p._2)) }
.filter(_._3 > 0.6)
Выведем результат в удобном виде:
corr.sortBy(_._3).reverse.foreach { c => println(f"{c._2}%25s\t${c._3}") }
Avg_Open_To_Buy Credit_Limit 0.9952040726156253
Total_Trans_Amt Total_Trans_Ct 0.8053901681243808
Customer_Age Months_on_book 0.7805047706891142
Avg_Utilization_Ratio Total_Revolving_Bal 0.6946855441968229</code></pre><h4 style="overflow-wrap: break-word; border: 0px; font-family: LeagueGothicRegular, Arial, sans-serif; font-size: 2.4rem; font-style: inherit; font-weight: inherit; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline; clear: both; line-height: 2; letter-spacing: 1px; text-transform: uppercase;">ВАРИАНТ 2: CORRELATION</h4><p style="overflow-wrap: break-word; border: 0px; font-family: inherit; font-size: 16px; font-style: inherit; font-weight: inherit; margin: 0px 0px 1.5em; outline: 0px; padding: 0px; vertical-align: baseline;">Чтобы воспользоваться вторым способом, надо собрать все числовые признаки в одну колонку типа Vector. Для этого используется преобразователь<span> </span><a rel="noreferrer noopener" href="http://spark.apache.org/docs/latest/ml-features.html#vectorassembler" target="_blank" style="border: 0px; font-family: inherit; font-size: 16px; font-style: inherit; font-weight: inherit; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline; color: rgb(255, 255, 255); text-decoration: underline;">VectorAssembler</a>. Применив VectorAssembler к нашему набору данных, получим новый набор данных<span> </span><em style="border: 0px; font-family: inherit; font-size: 16px; font-style: italic; font-weight: inherit; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;">numeric</em><span> </span>с колонкой<span> </span><em style="border: 0px; font-family: inherit; font-size: 16px; font-style: italic; font-weight: inherit; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;">features</em>, содержащей вектор с числовыми признаками.</p><p style="overflow-wrap: break-word; border: 0px; font-family: inherit; font-size: 16px; font-style: inherit; font-weight: inherit; margin: 0px 0px 1.5em; outline: 0px; padding: 0px; vertical-align: baseline;">Применив метод<span> </span><em style="border: 0px; font-family: inherit; font-size: 16px; font-style: italic; font-weight: inherit; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;">corr</em><span> </span>объекта<span> </span><em style="border: 0px; font-family: inherit; font-size: 16px; font-style: italic; font-weight: inherit; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;">Correlation</em><span> </span>к новому набору данных<span> </span><em style="border: 0px; font-family: inherit; font-size: 16px; font-style: italic; font-weight: inherit; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;">numeric</em>, можно получить матрицу корреляции числовых признаков:</p><div class="wp-block-syntaxhighlighter-code " style="border: 0px; font-family: inherit; font-size: 16px; font-style: inherit; font-weight: inherit; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;"><div style="border: 0px; font-family: inherit; font-size: 16px; font-style: inherit; font-weight: inherit; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;"><div id="highlighter_258867" class="syntaxhighlighter scala" style="border: 0px; font-family: inherit; font-size: 1em !important; font-style: inherit; font-weight: inherit; margin: 1em 0px !important; outline: 0px; padding: 0px; vertical-align: baseline; width: 690px; position: relative !important; overflow: auto hidden !important; background-color: white !important;"><table border="0" cellpadding="0" cellspacing="0" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; border-collapse: separate; border-spacing: 0px; width: 690px; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: left !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; table-layout: auto !important;"><tbody style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important;"><tr style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important;"><td class="gutter" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; text-align: left !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; color: rgb(175, 175, 175) !important;"><div class="line number1 index0 alt2" style="border-width: 0px 3px 0px 0px !important; border-top-style: initial !important; border-right-style: solid !important; border-bottom-style: initial !important; border-left-style: initial !important; border-top-color: initial !important; border-right-color: rgb(108, 226, 108) !important; border-bottom-color: initial !important; border-left-color: initial !important; border-image: initial !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 0.5em 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: right !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;">1</div><div class="line number2 index1 alt1" style="border-width: 0px 3px 0px 0px !important; border-top-style: initial !important; border-right-style: solid !important; border-bottom-style: initial !important; border-left-style: initial !important; border-top-color: initial !important; border-right-color: rgb(108, 226, 108) !important; border-bottom-color: initial !important; border-left-color: initial !important; border-image: initial !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 0.5em 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: right !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;">2</div><div class="line number3 index2 alt2" style="border-width: 0px 3px 0px 0px !important; border-top-style: initial !important; border-right-style: solid !important; border-bottom-style: initial !important; border-left-style: initial !important; border-top-color: initial !important; border-right-color: rgb(108, 226, 108) !important; border-bottom-color: initial !important; border-left-color: initial !important; border-image: initial !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 0.5em 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: right !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;">3</div><div class="line number4 index3 alt1" style="border-width: 0px 3px 0px 0px !important; border-top-style: initial !important; border-right-style: solid !important; border-bottom-style: initial !important; border-left-style: initial !important; border-top-color: initial !important; border-right-color: rgb(108, 226, 108) !important; border-bottom-color: initial !important; border-left-color: initial !important; border-image: initial !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 0.5em 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: right !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;">4</div><div class="line number5 index4 alt2" style="border-width: 0px 3px 0px 0px !important; border-top-style: initial !important; border-right-style: solid !important; border-bottom-style: initial !important; border-left-style: initial !important; border-top-color: initial !important; border-right-color: rgb(108, 226, 108) !important; border-bottom-color: initial !important; border-left-color: initial !important; border-image: initial !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 0.5em 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: right !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;">5</div><div class="line number6 index5 alt1" style="border-width: 0px 3px 0px 0px !important; border-top-style: initial !important; border-right-style: solid !important; border-bottom-style: initial !important; border-left-style: initial !important; border-top-color: initial !important; border-right-color: rgb(108, 226, 108) !important; border-bottom-color: initial !important; border-left-color: initial !important; border-image: initial !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 0.5em 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: right !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;">6</div><div class="line number7 index6 alt2" style="border-width: 0px 3px 0px 0px !important; border-top-style: initial !important; border-right-style: solid !important; border-bottom-style: initial !important; border-left-style: initial !important; border-top-color: initial !important; border-right-color: rgb(108, 226, 108) !important; border-bottom-color: initial !important; border-left-color: initial !important; border-image: initial !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 0.5em 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: right !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;">7</div><div class="line number8 index7 alt1" style="border-width: 0px 3px 0px 0px !important; border-top-style: initial !important; border-right-style: solid !important; border-bottom-style: initial !important; border-left-style: initial !important; border-top-color: initial !important; border-right-color: rgb(108, 226, 108) !important; border-bottom-color: initial !important; border-left-color: initial !important; border-image: initial !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 0.5em 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: right !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;">8</div><div class="line number9 index8 alt2" style="border-width: 0px 3px 0px 0px !important; border-top-style: initial !important; border-right-style: solid !important; border-bottom-style: initial !important; border-left-style: initial !important; border-top-color: initial !important; border-right-color: rgb(108, 226, 108) !important; border-bottom-color: initial !important; border-left-color: initial !important; border-image: initial !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 0.5em 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: right !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;">9</div><div class="line number10 index9 alt1" style="border-width: 0px 3px 0px 0px !important; border-top-style: initial !important; border-right-style: solid !important; border-bottom-style: initial !important; border-left-style: initial !important; border-top-color: initial !important; border-right-color: rgb(108, 226, 108) !important; border-bottom-color: initial !important; border-left-color: initial !important; border-image: initial !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 0.5em 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: right !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;">10</div><div class="line number11 index10 alt2" style="border-width: 0px 3px 0px 0px !important; border-top-style: initial !important; border-right-style: solid !important; border-bottom-style: initial !important; border-left-style: initial !important; border-top-color: initial !important; border-right-color: rgb(108, 226, 108) !important; border-bottom-color: initial !important; border-left-color: initial !important; border-image: initial !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 0.5em 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: right !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;">11</div></td><td class="code" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; text-align: left !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; width: 645.406px; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important;"><div class="container" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: relative !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important;"><div class="line number1 index0 alt2" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;"><code class="scala keyword" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: bold !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: rgb(0, 102, 153) !important;">import</code> <code class="scala plain" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: black !important;">org.apache.spark.ml.feature.VectorAssembler</code></div><div class="line number2 index1 alt1" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;"><code class="scala keyword" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: bold !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: rgb(0, 102, 153) !important;">import</code> <code class="scala plain" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: black !important;">org.apache.spark.ml.stat.Correlation</code></div><div class="line number3 index2 alt2" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;"><code class="scala keyword" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: bold !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: rgb(0, 102, 153) !important;">import</code> <code class="scala plain" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: black !important;">org.apache.spark.ml.linalg.Matrix</code></div><div class="line number4 index3 alt1" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;"><code class="scala keyword" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: bold !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: rgb(0, 102, 153) !important;">import</code> <code class="scala plain" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: black !important;">org.apache.spark.sql.Row</code></div><div class="line number5 index4 alt2" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;"> </div><div class="line number6 index5 alt1" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;"><code class="scala keyword" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: bold !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: rgb(0, 102, 153) !important;">val</code> <code class="scala plain" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: black !important;">numericAssembler </code><code class="scala keyword" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: bold !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: rgb(0, 102, 153) !important;">=</code> <code class="scala keyword" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: bold !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: rgb(0, 102, 153) !important;">new</code> <code class="scala plain" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: black !important;">VectorAssembler()</code></div><div class="line number7 index6 alt2" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;"><code class="scala spaces" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important;"> </code><code class="scala plain" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: black !important;">.setInputCols(numericColumns)</code></div><div class="line number8 index7 alt1" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;"><code class="scala spaces" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important;"> </code><code class="scala plain" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: black !important;">.setOutputCol(</code><code class="scala string" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: blue !important;">"features"</code><code class="scala plain" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: black !important;">)</code></div><div class="line number9 index8 alt2" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;"> </div><div class="line number10 index9 alt1" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;"><code class="scala keyword" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: bold !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: rgb(0, 102, 153) !important;">val</code> <code class="scala plain" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: black !important;">numeric </code><code class="scala keyword" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: bold !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: rgb(0, 102, 153) !important;">=</code> <code class="scala plain" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: black !important;">numericAssembler.transform(data)</code></div><div class="line number11 index10 alt2" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px 1em !important; vertical-align: baseline !important; border-radius: 0px !important; background: none white !important; inset: auto !important; float: none !important; height: auto !important; line-height: 1.1em !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; white-space: pre !important;"><code class="scala keyword" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: bold !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: rgb(0, 102, 153) !important;">val</code> <code class="scala plain" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: black !important;">Row(matrix</code><code class="scala keyword" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: bold !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: rgb(0, 102, 153) !important;">:</code> <code class="scala plain" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: black !important;">Matrix) </code><code class="scala keyword" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: bold !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: rgb(0, 102, 153) !important;">=</code> <code class="scala plain" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: black !important;">Correlation.corr(numeric, </code><code class="scala string" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: blue !important;">"features"</code><code class="scala plain" style="border: 0px !important; font-family: Monaco, Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace !important; font-size: 1em !important; font-style: normal !important; font-weight: normal !important; margin: 0px !important; outline: 0px !important; padding: 0px !important; vertical-align: baseline !important; font-variant: normal; font-stretch: normal; line-height: 1.1em !important; border-radius: 0px !important; background: none !important; inset: auto !important; float: none !important; height: auto !important; overflow: visible !important; position: static !important; text-align: left !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; display: inline !important; color: black !important;">).head</code></div></div></td></tr></tbody></table></div></div></div><p style="overflow-wrap: break-word; border: 0px; font-family: inherit; font-size: 16px; font-style: inherit; font-weight: inherit; margin: 0px 0px 1.5em; outline: 0px; padding: 0px; vertical-align: baseline;">Переменная<span> </span><em style="border: 0px; font-family: inherit; font-size: 16px; font-style: italic; font-weight: inherit; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline;">matrix</em><span> </span>– это матрица корреляции числовых признаков:</p><pre class="wp-block-code" style="border: 0px; font: 1.5rem / 1.6 "Courier 10 Pitch", Courier, monospace; margin: 0px 0px 1.6em; outline: 0px; padding: 1.6em; vertical-align: baseline; background: rgb(238, 238, 238); color: rgb(51, 51, 51); overflow: auto; max-width: 100%;"><code style="border: 0px; font: 1.5rem Monaco, Consolas, "Andale Mono", "DejaVu Sans Mono", monospace; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline; display: block; overflow-wrap: break-word; white-space: pre-wrap;">matrix: org.apache.spark.ml.linalg.Matrix =
1.0 -0.13575515707704905 ... (14 total)
-0.13575515707704905 1.0 ...
0.780504770689084 -0.11728062823959522 ...
-0.026525310066416643 -0.032664177863511015 ...
0.13116552936201348 -0.0106575011505989...
Теперь сопоставим матрицу корреляции с названиями числовых признаков, уберём пары из одинаковых названий, выделим пары с корреляцией больше 0.6, отсортируем пары в лексиграфическом порядке, и оставим только уникальные комбинации пар:
val corr2 = matrix.toArray
.zip(numericColumnsPairs)
.map(cnn => (cnn._2._1, cnn._2._2, cnn._1))
.filter(_._3 < 1.0)
.filter(_._3 > 0.6)
.map { p => if (p._1 < p._2) (p._1, p._2, p._3) else (p._2, p._1, p._3) }
.distinct
Выведем результат в удобном виде:
corr2.sortBy(._3).reverse.foreach { c => println(f"{c._2}%25s\t${c._3}") }
Avg_Open_To_Buy Credit_Limit 0.9952040726156179
Total_Trans_Amt Total_Trans_Ct 0.8053901681243786
Customer_Age Months_on_book 0.780504770689084
Avg_Utilization_Ratio Total_Revolving_Bal 0.6946855441968222</code></pre><p style="overflow-wrap: break-word; border: 0px; font-family: inherit; font-size: 16px; font-style: inherit; font-weight: inherit; margin: 0px 0px 1.5em; outline: 0px; padding: 0px; vertical-align: baseline;">Видно, что результат, полученный разными способами, совпадает.</p><p style="overflow-wrap: break-word; border: 0px; font-family: inherit; font-size: 16px; font-style: inherit; font-weight: inherit; margin: 0px 0px 1.5em; outline: 0px; padding: 0px; vertical-align: baseline;">Для проверки представим результаты в виже множеств и посмотрим на их пересечение:</p><pre class="wp-block-code" style="border: 0px; font: 1.5rem / 1.6 "Courier 10 Pitch", Courier, monospace; margin: 0px 0px 1.6em; outline: 0px; padding: 1.6em; vertical-align: baseline; background: rgb(238, 238, 238); color: rgb(51, 51, 51); overflow: auto; max-width: 100%;"><code style="border: 0px; font: 1.5rem Monaco, Consolas, "Andale Mono", "DejaVu Sans Mono", monospace; margin: 0px; outline: 0px; padding: 0px; vertical-align: baseline; display: block; overflow-wrap: break-word; white-space: pre-wrap;">corr.toSet.intersect(corr2.toSet)
res84: scala.collection.immutable.Set[(String, String, Double)] = Set()
Видно, что результат, полученный разными способами, совпадает.
Для проверки представим результаты в виже множеств и посмотрим на их пересечение:
corr.toSet.intersect(corr2.toSet)
res84: scala.collection.immutable.Set[(String, String, Double)] = Set()
Получили пустое множество, что подтверждает эквивалентность результатов, полученных разными способами.
Соберём список числовых признаков с низкой корреляцией в переменную numericColumnsFinal
:
val numericColumnsFinal = numericColumns.diff(corr.map(_._2))
Категориальные признаки
Теперь займёмся категориальными признаками.
Категориальный признак – это признак, значения которого обозначают принадлежность объекта к какой-то категории. Значения категориальных признаков – это наборы дискретных значений.
Но подавляющее большинство методов классификации и регрессии сформулированы в терминах метрических пространств, то есть подразумевают представление данных в виде вещественных векторов одинаковой размерности.
Поэтому для использования категориальных признаков их надо кодировать – преобразовать в непрерывные. Вместо одной категориальной переменной создается несолько, по количеству уникальных значений категориальной переменной. Значениями новых переменных будут 1.0 и 0.0 в соответствии со значением категориальной переменной.
Для кодирования категориальных переменных в Spark ML используется преобразователь OneHotEncoder.
Но прежде, чем применять его к признакам, содержащим строки, их надо проиндексировать. Для этого используется преобразователь StringIndexer.
В нашем наборе данных категориальными являются только колонки, содержащие строки.
Иногда к категориальным относят такой признак, как возраст. Но, как мы видели, в нашем случае возраст имеет практически нормальное распределение. Вот если бы у нас была переменная с группами возрастов, тогда с такой переменной надо работать как с категориальной.
Индексируем строковые колонки
Составим список всех строковых колонок за исключением колонки Attrition_Flag
, которая является целевой, и проиндесируем их, создав новые колонки, добавив Indexed
к названию исходных колонок.
import org.apache.spark.ml.feature.StringIndexer
val stringColumns = data
.dtypes
.filter(_._2.equals("StringType"))
.map(_._1)
.filter(!_.equals("Attrition_Flag"))
val stringColumnsIndexed = stringColumns.map(_ + "_Indexed")
val indexer = new StringIndexer()
.setInputCols(stringColumns)
.setOutputCols(stringColumnsIndexed)
val indexed = indexer.fit(data).transform(data)
indexed
– это новый набор данных с проиндексированными строковыми колонками.
Кодируем категориальные признаки
Теперь можно перейти к кодированию категориальных признаков.
Кодированные признаки будут находится в новых колонках, к названию которых будет добавлено Coded
import org.apache.spark.ml.feature.OneHotEncoder
val catColumns = stringColumnsIndexed.map(_ + "_Coded")
val encoder = new OneHotEncoder()
.setInputCols(stringColumnsIndexed)
.setOutputCols(catColumns)
val encoded = encoder.fit(indexed).transform(indexed)
encoded – это новый набор данных с кодированными категориальными признаками
Собираем признаки в вектор
После обработки категориальных признаков надо собрать все признаки в вектор.
Для этого используется преобразователь VectorAssembler, с которым мы уже встречались, когда вычисляли корреляцию числовых признаков вторым способом.
Применим его к списку числовых признаков с низкой корреляцией, объединному со списком кодированных категориальных переменных.
val featureColumns = numericColumnsFinal ++ catColumns
val assembler = new VectorAssembler()
.setInputCols(featureColumns)
.setOutputCol("features")
val assembled = assembler.transform(encoded)
assembled – это набор данных, содержащий колонку features, значениями которой является вектор признаков.
Нормализация
Давайте посмотрим на вектор признаков, который получился у нас в итоге.
assembled.select("features").show(5, truncate = false)
+--------------------------------------------------------------------------------------------------------------------+
|features |
+--------------------------------------------------------------------------------------------------------------------+
|(28,[0,1,2,3,4,5,6,7,8,9,12,17,23,25],[45.0,3.0,5.0,1.0,3.0,11914.0,1.335,1144.0,1.625,0.061,1.0,1.0,1.0,1.0]) |
|(28,[0,1,2,3,4,5,6,7,8,9,10,11,18,20,25],[49.0,5.0,6.0,1.0,2.0,7392.0,1.541,1291.0,3.714,0.105,1.0,1.0,1.0,1.0,1.0])|
|(28,[0,1,2,3,5,6,7,8,11,17,22,25],[51.0,3.0,4.0,1.0,3418.0,2.594,1887.0,2.333,1.0,1.0,1.0,1.0]) |
|(28,[0,1,2,3,4,5,6,7,8,9,10,12,19,20,25],[40.0,4.0,3.0,4.0,1.0,796.0,1.405,1171.0,2.333,0.76,1.0,1.0,1.0,1.0,1.0]) |
|(28,[0,1,2,3,5,6,7,8,14,17,23,25],[40.0,3.0,5.0,1.0,4716.0,2.175,816.0,2.5,1.0,1.0,1.0,1.0]) |
+--------------------------------------------------------------------------------------------------------------------+
only showing top 5 rows
Видна большая разница в значениях признаков.
Рекомендуется провести стандартизацию (удаление среднего и масштабирование дисперсии) или нормализацию (масштабирования отдельных образцов до единичной нормы) набора данных.
В Spark ML есть несколько методов, с помощью которых можно сделать такие преобразования:
Normalizer – нормализует вектор для получения единичной нормы;
StandardScaler – нормализация каждого признака для получения единичного стандартного отклонения и/или нулевого среднего;
RobustScaler – удаление медианы и масштабирование данных в соответствии с определенным диапазоном квантилей;
MinMaxScaler – масштабирование каждого признака в определенном диапазоне (часто [0, 1]);
MaxAbsScaler – масштабирование каждого признака в диапазоне [-1, 1] путем деления на максимальное абсолютное значение.
Применим MinMaxScaler для нормализации набора данных:
import org.apache.spark.ml.feature.MinMaxScaler
val scaler = new MinMaxScaler()
.setInputCol("features")
.setOutputCol("scaledFeatures")
val scaled = scaler.fit(assembled).transform(assembled)
scaled – это набор данных с вектором нормализованных признаков в колонке scaledFeatures
:
scaled.select("features", "scaledFeatures").show(5, truncate = false)
+--------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|features |scaledFeatures |
+--------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|(28,[0,1,2,3,4,5,6,7,8,9,12,17,23,25],[45.0,3.0,5.0,1.0,3.0,11914.0,1.335,1144.0,1.625,0.061,1.0,1.0,1.0,1.0]) |(28,[0,1,2,3,4,5,6,7,8,9,12,17,23,25],[0.40425531914893614,0.6000000000000001,0.8,0.16666666666666666,0.5,0.3451163329759801,0.39299381807477185,0.03527317236007566,0.43753365643511044,0.061061061061061066,1.0,1.0,1.0,1.0]) |
|(28,[0,1,2,3,4,5,6,7,8,9,10,11,18,20,25],[49.0,5.0,6.0,1.0,2.0,7392.0,1.541,1291.0,3.714,0.105,1.0,1.0,1.0,1.0,1.0])|(28,[0,1,2,3,4,5,6,7,8,9,10,11,18,20,25],[0.48936170212765956,1.0,1.0,0.16666666666666666,0.3333333333333333,0.21409324022831977,0.4536355607889314,0.043451652386780906,1.0,0.10510510510510511,1.0,1.0,1.0,1.0,1.0]) |
|(28,[0,1,2,3,5,6,7,8,11,17,22,25],[51.0,3.0,4.0,1.0,3418.0,2.594,1887.0,2.333,1.0,1.0,1.0,1.0]) |(28,[0,1,2,3,5,6,7,8,11,17,22,25],[0.5319148936170213,0.6000000000000001,0.6000000000000001,0.16666666666666666,0.09894822240894735,0.7636149543715043,0.07661065984199399,0.6281637049003771,1.0,1.0,1.0,1.0]) |
|(28,[0,1,2,3,4,5,6,7,8,9,10,12,19,20,25],[40.0,4.0,3.0,4.0,1.0,796.0,1.405,1171.0,2.333,0.76,1.0,1.0,1.0,1.0,1.0]) |(28,[0,1,2,3,4,5,6,7,8,9,10,12,19,20,25],[0.2978723404255319,0.8,0.4,0.6666666666666666,0.16666666666666666,0.02297684930316113,0.41360023550191344,0.036775342160899074,0.6281637049003771,0.7607607607607608,1.0,1.0,1.0,1.0,1.0])|
|(28,[0,1,2,3,5,6,7,8,14,17,23,25],[40.0,3.0,5.0,1.0,4716.0,2.175,816.0,2.5,1.0,1.0,1.0,1.0]) |(28,[0,1,2,3,5,6,7,8,14,17,23,25],[0.2978723404255319,0.6000000000000001,0.8,0.16666666666666666,0.13655723930113292,0.6402708272004709,0.017024591075998664,0.6731287022078623,1.0,1.0,1.0,1.0]) |
+--------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
only showing top 5 rowsFEATURE SELECTION (ОТБОР ПРИЗНАКОВ)Вектор признаков нашего набора данных содержит 28 признаков. Это не очень много. Тем не менее рассмотрим процедуру отбора признаков – выделения наиболее важных из нихUnivariateFeatureSelector – это универсальный преобразователь, которые позволяет выделить наиболее важные признаки. Он работает с категориальными/непрерывными признаками и категориальными/непрерывными целевыми переменными. Функция оценки выбирается исходя из типа признаков и целевой переменной:featureType
labelType
score function
categorical
categorical
chi-squared (chi2)
continuous
categorical
ANOVATest (f_classif)
continuous
continuous
F-value (f_regression)
Поддерживаются следующие методы отбора:numTopFeatures – фиксированное число отбираемых признаковpercentile – выбор по перцентилюfpr отбирает признаки, p-value которых ниже порогового значенияfdr использует процедуру Бенджамини-Хохберга для выбора признаков, частота ложных обнаружений которых ниже порогового значенияfwe отбирает признаки, p-value которых ниже порогового значения. Пороговое значение масштабируется по 1/numFeaturesПрименим UnivariateFeatureSelector с выбором по перцентилю с пороговым значением 0.75123456789101112import org.apache.spark.ml.feature.UnivariateFeatureSelector val selector = new UnivariateFeatureSelector() .setFeatureType("continuous") .setLabelType("categorical") .setSelectionMode("percentile") .setSelectionThreshold(0.75) .setFeaturesCol("scaledFeatures") .setLabelCol("target") .setOutputCol("selectedFeatures") val dataF = selector.fit(scaled).transform(scaled)dataF – это набор данных с вектором отобранных признаков в колонке selectedFeaturesdataF.select("scaledFeatures", "selectedFeatures").show(5, truncate = false)
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|scaledFeatures |selectedFeatures |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|(28,[0,1,2,3,4,5,6,7,8,9,12,17,23,25],[0.40425531914893614,0.6000000000000001,0.8,0.16666666666666666,0.5,0.3451163329759801,0.39299381807477185,0.03527317236007566,0.43753365643511044,0.061061061061061066,1.0,1.0,1.0,1.0]) |(21,[0,1,2,3,4,5,6,7,8,11,14,19],[0.40425531914893614,0.6000000000000001,0.8,0.16666666666666666,0.5,0.39299381807477185,0.03527317236007566,0.43753365643511044,0.061061061061061066,1.0,1.0,1.0]) |
|(28,[0,1,2,3,4,5,6,7,8,9,10,11,18,20,25],[0.48936170212765956,1.0,1.0,0.16666666666666666,0.3333333333333333,0.21409324022831977,0.4536355607889314,0.043451652386780906,1.0,0.10510510510510511,1.0,1.0,1.0,1.0,1.0]) |(21,[0,1,2,3,4,5,6,7,8,9,10,15,17],[0.48936170212765956,1.0,1.0,0.16666666666666666,0.3333333333333333,0.4536355607889314,0.043451652386780906,1.0,0.10510510510510511,1.0,1.0,1.0,1.0]) |
|(28,[0,1,2,3,5,6,7,8,11,17,22,25],[0.5319148936170213,0.6000000000000001,0.6000000000000001,0.16666666666666666,0.09894822240894735,0.7636149543715043,0.07661065984199399,0.6281637049003771,1.0,1.0,1.0,1.0]) |(21,[0,1,2,3,5,6,7,10,14],[0.5319148936170213,0.6000000000000001,0.6000000000000001,0.16666666666666666,0.7636149543715043,0.07661065984199399,0.6281637049003771,1.0,1.0]) |
|(28,[0,1,2,3,4,5,6,7,8,9,10,12,19,20,25],[0.2978723404255319,0.8,0.4,0.6666666666666666,0.16666666666666666,0.02297684930316113,0.41360023550191344,0.036775342160899074,0.6281637049003771,0.7607607607607608,1.0,1.0,1.0,1.0,1.0])|(21,[0,1,2,3,4,5,6,7,8,9,11,16,17],[0.2978723404255319,0.8,0.4,0.6666666666666666,0.16666666666666666,0.41360023550191344,0.036775342160899074,0.6281637049003771,0.7607607607607608,1.0,1.0,1.0,1.0])|
|(28,[0,1,2,3,5,6,7,8,14,17,23,25],[0.2978723404255319,0.6000000000000001,0.8,0.16666666666666666,0.13655723930113292,0.6402708272004709,0.017024591075998664,0.6731287022078623,1.0,1.0,1.0,1.0]) |(21,[0,1,2,3,5,6,7,14,19],[0.2978723404255319,0.6000000000000001,0.8,0.16666666666666666,0.6402708272004709,0.017024591075998664,0.6731287022078623,1.0,1.0]) |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
only showing top 5 rows
Мы сократили количество признаков с 28 до 21.
На этом заканчивается этап подготовки данных и можно переходить к следующему этапу – моделирование
Моделирование
Для построения моделей Spark ML предлагает такой набор алгоритмов:
Продемонстрируем этап моделирования на нашем примере.
Обучающая и тестовые выборки
Перед тем, как перейти к построению модели, необходимо разбить набор данных на обучающую и тестовую выборки. Для этого в Spark есть стандартный метод randomSplit
, аргументом которого является массив с пропорциями разделения.
val tt = dataF.randomSplit(Array(0.7, 0.3))
val training = tt(0)
val test = tt(1)
training – это обучающая выборка с 70% записей, а test – это тестовая выборка с, соответственно, 30% записей.
Логистическая регрессия
Мы решаем задачу бинарной классификации. Будем использовать логистическую регрессию, как хорошо зарекомендовавший себя алгоритм.
Для этого надо использовать объект LogisticRegression
, основными параметрами которого являются:
elasticNetParam
– αregParam
– λ
Выберем для начала эти параметры произвольным образом.
import org.apache.spark.ml.classification.LogisticRegression
val lr = new LogisticRegression()
.setMaxIter(1000)
.setRegParam(0.2)
.setElasticNetParam(0.8)
.setFamily("binomial")
.setFeaturesCol("selectedFeatures")
.setLabelCol("target")
val lrModel = lr.fit(training)
lrModel – это обученная модель.
TRAINING SUMMARY
Мы можем получить основную информацию об обученной модели. Для этого используется объект BinaryLogisticRegressionTrainingSummary:
val trainingSummary = lrModel.binarySummary
println(s"accuracy: ${trainingSummary.accuracy}")
println(s"areaUnderROC: ${trainingSummary.areaUnderROC}")
accuracy: 0.6986124278203912
areaUnderROC: 0.7455570759572957
Мы получили AUROC примерно 0.75, что, в принципе, неплохо.
Оценка
Проверяем модель на тестовой выборке
Применим обученную модель к тестовой выборке и посмотрим на результат.
val predicted = lrModel.transform(test)
Набор predicted
содержит новые колонки: rawPrediction
, probability
и prediction
:
predicted.select("target", "rawPrediction", "probability", "prediction").show(10, truncate = false)
+------+----------------------------------------------+----------------------------------------+----------+
|target|rawPrediction |probability |prediction|
+------+----------------------------------------------+----------------------------------------+----------+
|0 |[0.040262722641592585,-0.040262722641592585] |[0.5100643211022606,0.48993567889773937]|0.0 |
|0 |[-0.009994173386193073,0.009994173386193073] |[0.4975014774501823,0.5024985225498177] |1.0 |
|0 |[0.18939904012242004,-0.18939904012242004] |[0.547208721739737,0.452791278260263] |0.0 |
|0 |[0.057015021317521175,-0.057015021317521175] |[0.5142498953455751,0.4857501046544249] |0.0 |
|0 |[-0.030423805917813296,0.030423805917813296] |[0.4923946351436886,0.5076053648563115] |1.0 |
|0 |[-0.023886323507694818,0.023886323507694818] |[0.49402870303387675,0.5059712969661232]|1.0 |
|0 |[-0.05167062375069831,0.05167062375069831] |[0.4870852173158024,0.5129147826841975] |1.0 |
|0 |[0.0026721987834114613,-0.0026721987834114613]|[0.5006680492983275,0.49933195070167247]|0.0 |
|0 |[-0.05085343844943349,0.05085343844943349] |[0.48728937948478424,0.5127106205152158]|1.0 |
|0 |[-0.026746472062121662,0.026746472062121662] |[0.4933137805752158,0.5066862194247842] |1.0 |
+------+----------------------------------------------+----------------------------------------+----------+
only showing top 10 rows
В идеале значения в колонках target
и prediction
должны совпадать. Но, как мы видим, разница есть даже в первых десяти записях.
Для оценки применения модели к тестовой выборке можно воспользоваться объектом BinaryClassificationEvaluator:
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
val evaluator = new BinaryClassificationEvaluator().setLabelCol("target")
println(s"areaUnderROC: ${evaluator.evaluate(predicted)}\n")
areaUnderROC: 0.7445924078797251
AUROC на тестовой выборке тоже примерно 0.75
CONFUSION MATRIX (Матрица ошибок)
Полезным способом оценки модели является Матрица ошибок.
True Positive (TP) – label is positive and prediction is also positive;
True Negative (TN) – label is negative and prediction is also negative;
False Positive (FP) – label is negative but prediction is positive;
False Negative (FN) – label is positive but prediction is negative.
В Spark ML нет методов, вычисляющих матрицу ошибок непосредственно, но её легко вычислить непосредственно:
val tp = predicted.filter(($"target" === 1) and ($"prediction" === 1)).count
val tn = predicted.filter(($"target" === 0) and ($"prediction" === 0)).count
val fp = predicted.filter(($"target" === 0) and ($"prediction" === 1)).count
val fn = predicted.filter(($"target" === 1) and ($"prediction" === 0)).count
println(s"Confusion Matrix:\n$tp\t$fp\n$fn\t$tn\n")
Confusion Matrix:
1272 309
1198 2253
Желательно, чтобы значения на главной диагонали матрицы были большими, а на побочной – маленькими.
ACCURACY, PRECISION, RECALL
Следующими широко используемыми метриками оценки качества являются:
Accuracy (доля правильных ответов) = TP + TN / TP + TN + FP + FN
Precision (точность) = TP / TP + FP
Recall (полнота) = TP / TP + FN
Их легко вычислить по матрице ошибок:
val accuracy = (tp + tn) / (tp + tn + fp + fn).toDouble
val precision = tp / (tp + fp).toDouble
val recall = tp / (tp + fn).toDouble
println(s"Accuracy = $accuracy")
println(s"Precision = $precision")
println(s"Recall = $recall\n")
Accuracy = 0.700516693163752
Precision = 0.8045540796963947
Recall = 0.5149797570850202
Настройка моделей
Подбор гиперпараметров
При обучении нашей модели мы выбирали регуляризационные параметры произвольным образом. Давайте теперь посмотрим как можно подобрать оптимальные параметры для модели.
Для подбора гиперпараметров (выбора модели) Spark ML предлагает два инструмента: CrossValidator и TrainValidationSplit.
В обоих случаях требуется предоставить:
Estimator – алгоритм, который надо настроить;
Набор параметров: параметры для выбора (“сетка параметров”);
Evaluator – объект для оценки модели.
В общем случае процесс подбора гиперпараметров выглядит так:
Набор данных разбивается на обучающую и тестовую выборки;
Для каждой пары (training, test) перебираются параметры из сетки параметров;
Для каждого набора парметров применяется Estimator для построения модели;
Evaluator оценивает каждую модель;
Выбирается модель с лучшими показателями.
В качестве Evaluator может использоваться:
Для построения сетки параметров используется объект ParamGridBuilder.
CrossValidator
разбивает набор данных на набор folds, сочетания которых используются для обучения и тестирования. Оценка модели проходит для всех сочетаний folds.
TrainValidationSplit
разбивает набор на обучающую и тестовую выборку и оценивает модель на этом разбиение.
Для подбора гиперпараметров будем использовать TrainValidationSplit
:
import org.apache.spark.ml.tuning.{ParamGridBuilder, TrainValidationSplit}
val paramGrid = new ParamGridBuilder()
.addGrid(lr.regParam, Array(0.01, 0.1, 0.5))
.addGrid(lr.fitIntercept)
.addGrid(lr.elasticNetParam, Array(0.0, 0.5, 1.0))
.build()
val trainValidationSplit = new TrainValidationSplit()
.setEstimator(lr)
.setEvaluator(evaluator)
.setEstimatorParamMaps(paramGrid)
.setTrainRatio(0.7)
.setParallelism(2)
val model = trainValidationSplit.fit(dataF)
Лучшая модель находится в bestmodel
:
model.bestModel.extractParamMap()
res89: org.apache.spark.ml.param.ParamMap =
{
logreg_2eef3ae8c923-aggregationDepth: 2,
logreg_2eef3ae8c923-elasticNetParam: 0.0,
logreg_2eef3ae8c923-family: binomial,
logreg_2eef3ae8c923-featuresCol: selectedFeatures,
logreg_2eef3ae8c923-fitIntercept: true,
logreg_2eef3ae8c923-labelCol: target,
logreg_2eef3ae8c923-maxBlockSizeInMB: 0.0,
logreg_2eef3ae8c923-maxIter: 1000,
logreg_2eef3ae8c923-predictionCol: prediction,
logreg_2eef3ae8c923-probabilityCol: probability,
logreg_2eef3ae8c923-rawPredictionCol: rawPrediction,
logreg_2eef3ae8c923-regParam: 0.01,
logreg_2eef3ae8c923-standardization: true,
logreg_2eef3ae8c923-threshold: 0.5,
logreg_2eef3ae8c923-tol: 1.0E-6
}
Сохраним лучшую модель для дальнейшего использования:
val bestML = model.bestModel
Внедрение
ML PIPELINES
Что важно для внедрения моделей? Безошибочная повторяемость.
Давайте вспомним все этапы подготовки и расчёта моделей:
Отобрали числовые признаки (
numericColumnsFinal
);Проиндексировали строковые признаки (
indexer
);Закодировали категориальные признаки (
encoder
);Собрали признаки в вектор (
assembler
);Нормализовали признаки (
scaler
);Провели отбор признаков (
selector
);Рассчитали модель (
bestML
).
Прежде, чем применять расчитанную модель, мы должны применить весь набор преобразований к набору данных. При повторении расчётов легко ошибиться в этих этапах или, даже, пропустить какой-нибуть из них.
Хорошо бы построить модель, включающую в себя все необходимые преобразования.
ML Pipelines позволяют объединить все преобразования и алгоритмы в один конвейер или рабочий процесс:
import org.apache.spark.ml.Pipeline
val pipeline = new Pipeline().setStages(Array(indexer, encoder, assembler, scaler, selector, bestML))
Теперь, используя Pipeline, мы можем построить модель, включающую все необходимые преобразования.
val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3))
val pipelineModel = pipeline.fit(trainingData)
ML PERSISTENCE
Чтобы переиспользовать подготовленную модель нужна возможность сохранять и загружать их. Это обеспечивает ML persistence.
Сохраним конвейерную модель (PipelineModel
):
pipelineModel.write.overwrite().save(s"$basePath/pipelineModel")
SPARK ML PRODUCTION
Сохранённую модель можно загружать и использовать отдельно от исследовательского проекта, в котором мы её подготовили.
Загрузим набор данных (мы будем использовать тот же самый набор данных, но на практике обученную модель применяют к новому набору данных), загрузим конвейерную модель и применим её к набору данных:
val data = spark
.read
.option("header", "true")
.option("inferSchema", "true")
.csv(s"$basePath/data/BankChurners.csv")
import org.apache.spark.ml.PipelineModel
val model = PipelineModel.load(s"$basePath/pipelineModel")
val prediction = model.transform(data)
prediction
– это набор данных, который содержит исходные данные, данные, полученные в результате преобразований, и результат применения модели – предсказание.
prediction.show(5)
+---------+-----------------+------------+------+---------------+---------------+--------------+---------------+-------------+--------------+------------------------+----------------------+---------------------+------------+-------------------+---------------+--------------------+---------------+--------------+-------------------+---------------------+----------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+----------------------+-----------------------+--------------+-----------------------+---------------------+-----------------------------+----------------------------+--------------------+-----------------------------+---------------------------+--------------------+--------------------+--------------------+--------------------+--------------------+----------+
|CLIENTNUM| Attrition_Flag|Customer_Age|Gender|Dependent_count|Education_Level|Marital_Status|Income_Category|Card_Category|Months_on_book|Total_Relationship_Count|Months_Inactive_12_mon|Contacts_Count_12_mon|Credit_Limit|Total_Revolving_Bal|Avg_Open_To_Buy|Total_Amt_Chng_Q4_Q1|Total_Trans_Amt|Total_Trans_Ct|Total_Ct_Chng_Q4_Q1|Avg_Utilization_Ratio|Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_1|Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_Inactive_12_mon_2|Marital_Status_Indexed|Income_Category_Indexed|Gender_Indexed|Education_Level_Indexed|Card_Category_Indexed|Income_Category_Indexed_Coded|Marital_Status_Indexed_Coded|Gender_Indexed_Coded|Education_Level_Indexed_Coded|Card_Category_Indexed_Coded| features| scaledFeatures| selectedFeatures| rawPrediction| probability|prediction|
+---------+-----------------+------------+------+---------------+---------------+--------------+---------------+-------------+--------------+------------------------+----------------------+---------------------+------------+-------------------+---------------+--------------------+---------------+--------------+-------------------+---------------------+----------------------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------------------+----------------------+-----------------------+--------------+-----------------------+---------------------+-----------------------------+----------------------------+--------------------+-----------------------------+---------------------------+--------------------+--------------------+--------------------+--------------------+--------------------+----------+
|768805383|Existing Customer| 45| M| 3| High School| Married| ПРОВЕРИМ РЕЗУЛЬТАТДля проверки результата вычислим Матрицу ошибок:123456val tp = prediction.filter((" class="formula inline">"Attrition_Flag" === "Attrited Customer") and ("prediction" === 1)).countval tn = prediction.filter((" class="formula inline">"Attrition_Flag" === "Existing Customer") and ("prediction" === 0)).countval fp = prediction.filter((" class="formula inline">"Attrition_Flag" === "Existing Customer") and ("prediction" === 1)).countval fn = prediction.filter((" class="formula inline">"Attrition_Flag" === "Attrited Customer") and ("prediction" === 0)).count println(s"Confusion Matrix:\n" class="formula inline">tp\tfn\t\t)Confusion Matrix:
1199 1893
428 6607Вычислим также Accuracy, Precision, Recall:1234567val accuracy = (tp + tn) / (tp + tn + fp + fn).toDoubleval precision = tp / (tp + fp).toDoubleval recall = tp / (tp + fn).toDouble println(s"Accuracy = $accuracy")println(s"Precision = $precision")println(s"Recall = $recall\n")Accuracy = 0.7708107040584576
Precision = 0.38777490297542044
Recall = 0.7369391518131531ПРЕДВАРИТЕЛЬНЫЙ РАСЧЁТ (PRECOMPUTE)Разумеется никто не использует для Production. Для этого пишется код, собираемый в исполняемый файл, запускаемый на кластере.Одним из способов использования ML в Production является Предварительный расчёт (Precompute). В пакетном режиме, по расписанию, обученная модель применяется к набору данных. Идентификаторы клиентов, для которых модель предсказывает отток, сохраняются для использования в дальнейших бизнес-процессах.Исходный код использования способа Предварительный расчёт выглядит так:12345678910111213141516171819202122232425262728293031323334353637383940414243444546package ru.otus.sparkml import org.apache.spark.sql.{SaveMode, SparkSession}import org.apache.spark.ml.PipelineModel object ProdML { def main(args: Array[String]): Unit = { if (args.length != 3) { println("Usage: SparkML <path-to-model> <path-to-input> <path-to-output>") sys.exit(-1) } val spark = SparkSession.builder .appName("SparkML") .config("spark.sql.debug.maxToStringFields", 100) .getOrCreate() import spark.implicits._ try { val model = PipelineModel.load(args(0)) val data = spark.read .option("header", "true") .option("inferSchema", "true") .csv(args(1)) val prediction = model.transform(data) prediction .filter(" class="formula inline">"prediction" === 1) .select("CLIENTNUM") .repartition(1) .write .mode(SaveMode.Overwrite) .csv(args(2)) } catch { case e: Exception => println(s"ERROR: ${e.getMessage}") sys.exit(-1) } finally { spark.stop() } }}Весь проект находится здесь: https://github.com/vzaigrin/otus/tree/main/SparkMLSHARE THIS:TwitterFacebookRELATEDUniversal Storage CollectorJanuary 28, 2017In "EMC"One-wire on Raspberry Pi with FreeBSD 11January 12, 2016In "Arduino"VNXCollector – DIY EMC VNX Monitoring and ReportingMarch 8, 2016In "EMC"
Проверим результат
Для проверки результата вычислим Матрицу ошибок:
val tp = prediction.filter(($"Attrition_Flag" === "Attrited Customer") and ($"prediction" === 1)).count
val tn = prediction.filter(($"Attrition_Flag" === "Existing Customer") and ($"prediction" === 0)).count
val fp = prediction.filter(($"Attrition_Flag" === "Existing Customer") and ($"prediction" === 1)).count
val fn = prediction.filter(($"Attrition_Flag" === "Attrited Customer") and ($"prediction" === 0)).count
println(s"Confusion Matrix:\n$tp\t$fp\n$fn\t\t$tn\n")
Confusion Matrix:
1199 1893
428 6607
Вычислим также Accuracy
, Precision
, Recall
:
val accuracy = (tp + tn) / (tp + tn + fp + fn).toDouble
val precision = tp / (tp + fp).toDouble
val recall = tp / (tp + fn).toDouble
println(s"Accuracy = $accuracy")
println(s"Precision = $precision")
println(s"Recall = $recall\n")
Accuracy = 0.7708107040584576
Precision = 0.38777490297542044
Recall = 0.7369391518131531
Предварительный расчет (PRECOMPUTE)
Разумеется никто не использует для Production
. Для этого пишется код, собираемый в исполняемый файл, запускаемый на кластере.
Одним из способов использования ML в Production является Предварительный расчёт (Precompute
). В пакетном режиме, по расписанию, обученная модель применяется к набору данных. Идентификаторы клиентов, для которых модель предсказывает отток, сохраняются для использования в дальнейших бизнес-процессах.
Исходный код использования способа Предварительный расчёт выглядит так:
package ru.otus.sparkml
import org.apache.spark.sql.{SaveMode, SparkSession}
import org.apache.spark.ml.PipelineModel
object ProdML {
def main(args: Array[String]): Unit = {
if (args.length != 3) {
println("Usage: SparkML <path-to-model> <path-to-input> <path-to-output>")
sys.exit(-1)
}
val spark = SparkSession.builder
.appName("SparkML")
.config("spark.sql.debug.maxToStringFields", 100)
.getOrCreate()
import spark.implicits._
try {
val model = PipelineModel.load(args(0))
val data = spark.read
.option("header", "true")
.option("inferSchema", "true")
.csv(args(1))
val prediction = model.transform(data)
prediction
.filter($"prediction" === 1)
.select("CLIENTNUM")
.repartition(1)
.write
.mode(SaveMode.Overwrite)
.csv(args(2))
} catch {
case e: Exception =>
println(s"ERROR: ${e.getMessage}")
sys.exit(-1)
} finally {
spark.stop()
}
}
}
Весь проект находится здесь: https://github.com/vzaigrin/otus/tree/main/SparkML
Всех заинтересованных приглашаем на открытый урок «Архитектура фреймворка Apache Spark». На этом занятии рассмотрим внутреннее устройство Apache Spark:
что это такое и зачем он нужен;
как работают распределенные приложения на этом фреймворке;
из чего состоят эти приложения;
как они масштабируются.
bm13kk
Если никто не против. А можно вопрос обществу биг даты?
У меня есть задача, которую я сейчас делаю несколькими нодами в пандас. Занимает полчаса на 10 нодах. Порядок обьема данных - десятки миллионов строк.
Как быстро будет работать спарк, если данных будет на 2 порядка больше?
sshikov
Вряд ли вам кто-то ответит на вопрос в такой постановке. Миллион строк за полчаса на одну ноду. И? Какова длина строки, если это реляционные данные — то сколько колонок и килобайт/мегабайт занимает строка? Сколько памяти у ноды, сколько ядер? Какие там диски? В чем состоит обработка? Где бутылочное горлышко — вы упираетесь в диски, память или процессор? Это вообще одна таблица, или есть скажем join?
Тут куча параметров. У нас спарк переваривает по одной из систем порядка десятков терабайт в сутки. Но никто не говорит, что это дешево — ресурсов на это уходит масса. Спарк просто позволит вам более-менее эффективно распараллелить свою задачу на все имеющиеся ресурсы — т.е. с пользой употребить скажем все ядра, и всю доступную память (скажем, если у вас есть ее терабайт на ноде).
Кроме всего прочего, Spark это не черный ящик с волшебной кнопкой. Это фреймворк для скалы/java/питона/R, и как быстро он будет работать, зависит от того, как вы его запрограммируете, в том числе. И на чем (скажем, python будет медленнее, в ряде случае — сильно).
bm13kk
Отвечая на вопрос - данные табличные. Джоины есть, но это все собирается в один большой датафрейм и уже он обрабатывается. Обьем - порядка 100 мегабайт. Собраный датафрейм - ближе к гигабайту. На одной ноде датафрейм разбухает до 8-10 ГБ пока работает. Упирались в память, оптимизировали, теперь упираемся в процесорное время. Какие бы ноды не были (они разные в разных случаях) - теже будут для спарка.
Я пытаюсь понять, будет ли выгода по производительности. Если работа уже разбита куски по нодам. Моя цель - уложится в 30 минут. Когда данные вырастут на 2 порядка - мне нужно будет под тысячу нод.
Судя по Вашему ответу - мне спарк не вылечит проблему производительности. Он поможет с управлением\оркестрацией. Возможно с гонками, когда тысяча нод будут пытаться писать в одно место. Примерно тот-де ответ я получаю по другим инструментам из бигдаты.
sshikov
Если все уже более-менее разбито на куски, причем оптимально (т.е. нет например перекосов, когда все свалилось в одну партицию) — то вряд ли спарк вам принципиально что-то даст. Во всяком случае — даром (т.е. без того, чтобы программировать, оптимизировать и т.п.).
Ну т.е. я бы сказал, что пока ваши данные влезают в вашу память (общую память кластера) — вы можете почти ни о чем не думать (ну, при условии, что кластер у вас в монопольном пользовании), и достаточно точно прикинуть, сколько времени вы будете читать исходные данные с диска, писать обратно результаты, и переваривать их в памяти. И это будет более-менее плавно масштабироваться с наращиванием железок. А потом вы начинаете упираться в самые разные вещи, иногда совершенно неожиданные. Ну, условно, у хадупа скажем есть ограничение в миллион (1м) файлов в папке. Или еще какая-то непредсказуемая хрень.
И кстати, у нас нет насколько я знаю, ни одного кластера из 1000 нод, зато есть много размера примерно 100-200. И подозреваю я (это немного не моя работа), что есть некий предел, до которого можно легко масштабировать хадуп. И что-то похожее видимо будет и у вас — только в профиль.
Geckelberryfinn
В качестве эксперимента, возьмите Databricks (есть и в azure и в aws), загрузите ваш датасет и попробуйте его обработать. Сейчас датабрикс поддерживает pandas в pyspark (не всё, по моему опыту, но, возможно, вам хватит, либо обходные пути можно найти, я не знаю ваш случай). 10 стандартных нод будут стоит не так дорого, думаю, около 8-10 евро в час. Это не те же самые ноды, что будут у вас, но задешево может дать идею о масштабируемости вашего решения.
sshikov
Кстати хорошая идея. Проще попробовать. Насколько я помню, самые плохие (с точки зрения производительности) вещи в случае pyspark — это UDF, если их нет — то проще всего попробовать прямо в таком виде, как оно есть.
bm13kk
у нас не тривиальная система, которая пытается из строки вытащить дату
sshikov
Ну, смотрите — у спарка в случае питона UDF работают через два вызова между JVM и питоном — поэтому тут производительность проседает/проседала. Я не работаю с pyspark, и не слежу — вроде это пытались оптимизировать (не уверен, что в принципе возможно), но именно это место было одним из самых плохих.
Geckelberryfinn
В теории это так, ибо нужно как минимум сериализировать/десериализировать объекты между python и jvm. Мои тесты некоторых специфических UDF на python и scala не показывали особой разницы в производительности (databricks v10). В функцию передавался Map[String, Array[String]]. Но такие случаи вполне могут быть. Опять же, лучше протестировать. Можно комбинировать код на Питоне и UDF на scala в одном ноутбуке. Очень удобно.
sshikov
Ну, я исходил из того, что переписывать на скалу вот так сразу — непонятно ради чего, если уже написано на pandas, и хочется просто оценить производительность? Когда с нуля пишешь — ну я выберу скалу, не вижу у питона преимуществ, во всяком случае если ML не задействовано. Но если кому на питоне комфортнее — почему нет?