или точнее, попытка декомпилировать знаменитый портфель от Рэя Далио и перестроить его с учетом современных реалий.
Первоначально пост был опубликован в сентябре 2021 года, печатается с дополнениями и изменениями.
Портфель «На все времена» (All-weather) и его недостатки
Меня всегда интересовало, как построить для себя пассивный инвестиционный портфель, который бы генерил доходность, сопоставимую с индексным фондом, но с меньшими относительными просадками в периоды кризисов. На первый взгляд, невыполнимая задача со стороны теоретиков эффективного рынка. Со временем размышления на тему привели меня к изучению так называемых “вечных”(permanent) портфелей. Одним из таких портфелей является портфель “На все времена” (All-weather или All-seasons portfolio).
Название портфеля говорит само за себя — это защитный портфель, который предназначен для пассивных инвестиций на долгий срок с минимальной волатильностью и рисками снижения портфеля.
В кругах розничных инвесторов данный портфель получил свое распространение после интервью основателя хедж-фонда Bridgewater Associates и разработчика стратегии, Рэя Далио народному целителю коучу Тони Роббинсу, которое вошло в книгу “Money Master the Game: 7 Simple Steps to Financial Freedom”.
Инвестиции в данном портфеле для простоты распределены между 5 ETF (торгуемыми паевыми фондами)
Необходимо отметить, что нам не открыли реальный портфель, по которому работает фонд. Дело в том, что этот фонд предлагает данную стратегию крупным институциональным инвесторам, таким как пенсионные фонды, и информация о реальном распределении инвестиций в данном портфеле недоступна в публичном доступе. То что назвали в книге портфелем “На все времена” — это по сути такой эрзац, вместо реального All-weather, которым управляет фонд Bridgewater Associates. Этот эрзац был рекомендован для розничных инвесторов, кто желает инвестировать в пассивный портфель с минимальными рисками. Поэтому далее в тексте упоминание “На все времена” относится именно к этому эрзацу (также я его для сравнения с реконструированной версией буду называть “классическим” портфелем).
Сама идея портфеля прижилась, и теперь можно на разных сервисах для анализа инвестиций как например https://www.portfoliovisualizer.com/ выбрать данный портфель и проанализировать его доходность.
В целом на протяжении c 2007 до конца 2021 года рекомендованный портфель показывал положительную динамику и отлично защищал от просадок. Волатильность портфеля за этот период была в 2 раза меньше индексного фонда (SPY), а максимум просадки составил 12% в кризис 2008г.
Но потом случился 2022 год и дела пошли не так хорошо, как его рекламировали. В 2022 году просадка портфеля составила 21%, что сопоставимо с падением на 24% индексного фонда. Это почти в 2 раз больше, чем просадка в финансовый кризис 2008 года, тем более что экономика США росла в 2022 году. В 2023 году индексный фонд SPY уже наверстал половину потерь за прошлый год, а портфель Рэя Далио скребет по дну. Причина в высокой аллокации в казначейские облигации, которые составляют 55% в портфеле.
Уже в 2021 году, принимая во внимание исторически высокую инфляцию в США и мире, можно было задать вопрос релевантности данного портфеля в следующем десятилетии.
В интервью указано, что данный портфель был проанализирован на промежутке с 1984 по 2013 годы, на котором он показал отличные результаты: средний годовой доход в 10% (не путать с cagr), при просадке менее 4% в 2008 году и низкой волатильности около 8% в год. А что было бы с этим портфелем ранее 1984 года, авторы почему-то умолчали. А ранее был период стагфляции 70-х годов, когда инфляция зашкаливала, а экономический рост был слабым. В конце 70-х ФРС пришлось поднять ставки выше 20%, чтобы справиться с устойчиво высокой инфляцией.
Именно с 1984 года долгосрочные процентные ставки снижались в тандеме со средним уровнем инфляции в США на протяжении последних десятилетий.
Составители портфеля слукавили, назвав его “На все времена”, так как именно с 1984 г. казначейские облигации отлично защищали портфель от высокой волатильности в периоды кризисов (уточнение: до 2022 года). По факту портфель должны были назвать “На все времена” кроме периодов стагфляции, которую мы и наблюдаем с 2022 года по настоящий момент.
Что если впереди нас ждет десятилетие относительно высокой устойчивой инфляции? В таком случае распределение весов по активам в данном портфеле является уже нерелевантным. К тому же, в релевантности высокой аллокации в облигации в портфеле усомнились и сами разработчики портфеля.
Я решил перекомпилировать портфель с учетом периодов стагфляции, чтобы он стал по-настоящему портфелем “На все времена”.
Декомпиляция портфеля
В первую очередь необходимо разобраться, на каких принципах строится данный портфель. На сайте фонда достаточно материалов, чтобы разобраться в логике инвестиционной стратегии All-weather.
Реальный портфель строится на двух основных принципах:
все классы активов генерируют примерно одинаковую доходность при поправке на волатильность — чем выше потенциальная доходность, тем выше риск;
каждый актив ведет себя структурно по-разному в зависимости от текущего макроэкономического режима.
Первый принцип называется Risk parity. Например, казначейские облигации имеют историческую волатильность примерно в 2 раза ниже акций. Применив леверидж 2:1 к облигациям, мы практически уравняем их параметры доходности и риска.
Ниже наглядно показано, что разные классы активов имеют относительно одинаковую доходность, если их нормализовать по параметру левериджа (волатильности).
Этот принцип поддерживает максимальную диверсификацию инвестиций по разным классам активов в зависимости от риска. Диверсифицированный таким образом портфель получает доход в виде премии за риск (risk premium).
Теория Макровица (MPT — modern portfolio theory), из которой мы все знаем портфель 60/40 как эффективный портфель, оптимизирует распределение между активами “в лоб” на основе исторической корреляции активов между собой. Такой метод не берет в расчет два важных фактора. Во-первых, корреляции не статичны и все время меняются. Во-вторых, в периоды кризиса корреляция между рисковыми активами стремится к 1 (tail risk) — т.е. все они резко теряют в цене.
Для устранения недостатков MPT, Bridgewater Associates инкорпорировали в построение портфеля динамику таких макроэкономических показателей, как инфляция и экономический рост. Эти два фактора непосредственно влияют на изменение цен активов. Например, инфляция влияет на доходность бондов, а доходность бондов влияет на привлекательность акций. Экономика может находится в 4 макрорежимах:
растущая экономика
стагнирующая экономика
растущая инфляция
снижающаяся инфляция
Для каждого из этих 4 макрорежимов является оптимальным свой портфель активов. Например, в период дефляции самое лучшее решение — это держать средства в кэше или облигациях, и т.д. Таким образом, они разметили активы по разным квадрантам макрорежимов.
Честно говоря, мне более понятно, как показано взаимодействие между собой экономического роста и инфляции, выраженное в квадранте на рисунке ниже.
Как видно из квадранта выше, портфель распределяет риск равномерно по 4 макроэкономическим режимам, аллоцируя на каждый режим 25% от общего риска портфеля. Оптимальная диверсификация всего портфеля достигается на двух уровнях: через диверсификацию на уровне макрорежимов (равномерное распределение риска по 4 разным режимам), и через диверсификацию между активами уже внутри каждого макрорежима.
Реинжиниринг портфеля
Используя принципы построения портфеля, я попытался перестроить его и включить в него недостающий по-моему режим стагфляции и посмотреть, как изменятся удельные веса активов в портфеле.
Так как рекомендованный в книге портфель ограничен 4 классами активов, для поиска оптимального распределения я также буду использовать те же 4 класса распределенные между 5 ETF.
Необходимо отметить, что я столкнулся с отсутствием необходимых данных при воспроизведении и реинжиниринге портфеля. Если по базовому активу фонда SPY я смог скачать данные по индексу SP500 в публичном доступе с сайта stooq.com. то по другим пришлось воспроизводить данные самостоятельно. Для примера, ETF DBC от Invesco инвестирует в фьючерсы сырьевых товаров. Поэтому я воспроизвел данный индекс на основе исторических данных спотовых цен на сырьевые товары Pink Sheet от World Bank. Что касается расчетов дохода от вложении в казначейские облигации, то были использованы открытые данные от FRED по доходностям долгосрочных облигаций и работы Swinkels из Erasmus University Rotterdam.
Для декомпиляции по макрорежимам я использовал периоды, указанные в исследовании B.Stewart. В эти периоды я добавил в режим безинфляционного роста период вплоть до декабря 2019 г. (в статье изначально указано до февраля 2015 г.). И использовал весь период 70-х годов в качестве периода стагфляции. Также я распределил периоды 2020 — 2023 годов по соответствующим макрорежимам на основе данных по инфляции и росту ВВП США.
Теперь перейдем к построению оптимального портфеля для каждого режима.
Концепция risk parity учитывает только 2 параметра: волатильность и корреляции между активами для нахождения оптимального веса каждого актива в портфеле, чтобы удельный риск по каждому активу был одинаковым в портфеле.
Так как уже вверху показано, что в среднем доходности относительно волатильности по каждому классу активов примерно равны, поэтому относительные доходности активов и не берут в расчет. Но если в среднем это так, то внутри каждого режима доходности должны все-таки отличаться, что должно влиять на оптимальные веса активов для каждого отдельного макрорежима. Теория Марковица берет в расчет дополнительный параметр — доходность каждого актива при построения оптимального портфеля. Поэтому попробую сделать оптимальный портфель для каждого отдельного макрорежима по 2 методам — risk parity и метод Марковица.
Сперва мы находим оптимальный портфель для каждого макрорежима (выбираем активы для каждого портфеля в соответствии с квадрантом). Для простоты нахождения удельных весов активов в портфеле, я использовал метод naive risk parity — т.е. доля актива в портфеле должна быть обратной его волатильности.
На последнем этапе, на основании волатильности портфелей по каждому макрорежиму (в колонке Portfolio), определим удельные веса каждого актива в общем портфеле, суммируя произведения удельных весов активов в каждом режиме на удельный вес каждого режима в общем портфеле. Удельный вес каждого режима опять же обратно пропорционален его волатильности (т.е. теперь каждый режим несет в себе 25% риска в общем портфеле).
Таблица 1. Naive risk parity (RP) optimization
Какие наблюдения можно сделать на основе полученных результатов?
Первое, получили намного меньшую долю бондов в портфеле — 35%.
Второе, максимальная просадка “реорганизованного” портфеля, с учетом включения режима стагфляции, составила 23% в 1982 году или минус 15% на конец года. Максимальная просадка “классического” портфеля в сопоставимый период составила бы 18% в 1981 г. или минус 12% на конец года. Разница объясняется более высокой аллокацией в золото и сырьевые товары в реорганизованном портфеле. Например, золото в период 1980 — 1982 годов упало в 2 раза в цене, а бонды пострадали сравнительно меньше.
В то же время, на всем промежутке тестового периода с 1970-х годов волатильности портфелей практически равны, а доходность на риск по “реорганизованному” выше, что и показывает коэффициент Шарпа.
Третье, режим стагфляции занял в общем портфеле 12% удельного веса, а режим дефляции 17% соответственно, что близко к 14% по двум данным макрорежимам, в соответствии с данными Stweart.
А что если взять в учет все таки доходности по активам и оптимизировать удельные веса активов по Макровицу внутри каждого макрорежима? Если оптимизировать аллокации внутри каждого режима на основе теории Марковица, и потом уже определить вес каждого режима в общем весе на основе risk parity, получим несколько другие результаты.
А получим следующие результаты.
Таблица 2. Markowitz plus RP optimization (MPT + RP)
В данной версии портфеля удельный вес бондов получается еще ниже — 30% в общем портфеле. И несколько выше веса золота и акций. Причина в том, что режим рефляции (инфляционного роста) получил больший вес в портфеле, так как по расчетам волатильность данного режима вышла меньше, чем дезинфляционного роста. Что довольно удивительно, учитывая что по отдельности золото и сырьевые товары более волатильны, чем акции и тем более облигации.
Максимальная просадка портфеля уже 25% или 16% на конец 1982 года. Коэффициент Шарпа на 0.01% хуже за счет более высокой волатильности данной версии портфеля, что конечно же объясняется еще меньшим содержанием бондов в портфеле. Но в целом, можно сказать что данная версия портфеля, несмотря на довольно значительное снижение доли бондов, не показывает значительное ухудшение показателей риска. И к тому же показывает большую доходность за прошедший период.
Таблица 3. Сравнительная таблица показателей портфелей
Что меня смущает в MPT+RP версии портфеля — это довольно высокая аллокация в золото. Это вышло по двум причинам. Золото оказалось в дефляционном портфеле, хотя по факту иметь золото на руках в период дефляции очень рискованно — так как в эти периоды лучше перфомят казначейские облигации. По моим же расчетам, доход от золота в периоды дефляции получился чуть выше 0%, но отрицательная корреляция с облигациями определила добавление золота в дефляционный портфель. Вторая причина — это несколько спорная пропорция между режимами рефляции и дизинфляционного роста. В связи с чем и вышла более высокая аллокация в золото и сырьевые товары в общем портфеле.
На мой взгляд, можете назвать это bias, более оправдано снизить аллокацию в золото и сырьевые товары и увеличить в акции. Либо же снизить аллокацию в золото и облигации и увеличить в акции.
Я снизил аллокацию в золото в дефляционном режиме в 2 раза до пропорции 20:80 между золотом и бондами. И также в рефляционном режиме обнулил аллокации в облигации и увеличил на соответствующую долю в акции. Эти манипуляции несколько увеличили волатильность соответствующих портфелей — что и повлияло на развесовку активов в конечном портфеле.
Таблица 4. Balanced portfolio (less bonds)
Последний момент. Я использовал данные индекса SP500 в своих расчетах, и он не отражает дивидендную доходность. Поэтому к cagr выше необходимо добавить также минимум 1.5% дивидендной доходности в год по акциям (пропорционально доле акций в общем портфеле). С 2023 года все нерезиденты США, владеющие фондами, основной долей которых являются фьючерсы на сырьевые товары (DBC), подпадают под 10% налог от всей суммы сделки при реализации. Данный пункт делает нецелесообразным владение ETF DBC, поэтому я рекомендую его заменить на ETF акций нефтяного сектора XLE, что во-первых, позволит генерировать дивидендную доходность, и позволит защитить портфель в периоды стагфляции.
Таблица 5. Скорректированные показатели по всем портфелям.
Сравнение доходностей в инфляционные 70-е говорит также в пользу портфеля с большим содержанием акций и меньшим бондов. В 70% случаев эти портфели “били” инфляцию и индекс за период в 1970 — 1980 годы.
Рост портфеля также говорит в пользу портфеля Balanced. На всем анализируемом промежутке он принес макcимальную доходность из всех портфелей. Только на промежутке 70-х годов и в период 2007 — 2010 годов портфель MPT+RP показывает сравнительно лучший рост, чем My bias. В 1973 — 74 годы США пережили шок от нефтяного эмбарго, что было одной из важнейших причин роста инфляции в тот период и соответственно роста золота и сырьевых товаров. В период конца 2000-х золото также резко подорожало в связи с инфляцией и потом уже резким запуском печатного станка в США для выхода из тяжелейшей дефляции сложившейся в 2008 — 2009 годах.
Возвращение шоков 70-х маловероятно, и поэтому осмелюсь утверждать, что Balanced портфель является более сбалансированным и к тому же лучше защищающим от риска стагфляции в ближайшее десятилетие.
Если вам интересно, я выложил ссылки на файл с расчетами в моем телеграм-канале https://t.me/systematical. На канале, я разбираю пассивные и активные стратегии инвестирования, основанные на количественных методах в финансах.
anzay911
У Стина Якобсена, главного стратега Saxo Bank, есть методика столетнего портфеля.
Systematikz Автор
Спасибо за наводку, будет интересно сравнить. Эти портфели относятся к так называемому классу "вечных" (permanent) портфелей. И многие создатели, я так понял, вдохновлялись Harry Browne, кто и предложил концепцию вечного портфеля
gusev
сколько портфель проигрывает / выигрывает индексу S&P 500?
anzay911
— Вы должны создать такой портфель, который позволяет вам торговать в любое время и в любой среде. Будь то высокая инфляция, низкая инфляция, рецессия или же ралли или же что-то ещё. Я не хочу хвастаться, но модель сделала 35% в 2019, 34% в 2020 и 11% уже в этом году (интервью от марта 2021).
...
— Знаете, есть такой портфель Рэя Далио, он называется "all weather" или "всепогодный портфель Рэя Далио". И мы в своё время его собрали через ETF и как показала практика на кризисе даже прошлого года, в марте он очень хорошо себя показал. Правда вот в последние месяцы, когда на рынке ралли, он прямо явно отстает. То есть рынок вырос на 23%, а он вырос на 9%, мы прям хорошо отстаём от индекса. Вот не будет такого же с вашим портфелем, что падаем мы меньше раз в пять, а потом очень сильно отстаём от индекса?
— На самом деле ничего подобного, потому что в отличие от Рэя Далио я ребалансирую свой портфель каждый месяц. То есть относительно экспозиции у меня всегда одинаково. Это не так, что я сижу на 1 января 2020 года. Там, допустим, рынок поменялся на 30% и я принимаю решение покупать или не покупать. Я покупаю в феврале, я покупаю в марте, покупаю в апреле. То есть у меня всегда постоянная аллокация - 35% акции. Поэтому, да, я могу быть чуть медленней, чем тот, кто на 100% в шортах или на 100% в лонгах, ну суть-то не в этом. Понимаете, это портфель и для мамы, которой сейчас больше нет, для моих внуков, которым я могу это оставить и мне будет не стыдно. То есть я могу отдать это всё своим детям и этот портфель будет работать и кормить их. Я думаю, что мало может похвастаться 35% доходностью за прошлый год. Я это сделал.
Systematikz Автор
ребалансировка портфеля каждый месяц является на долгих промежутках неоптимальной стратегией, так как съедает от доходов за счет расходов на торговлю. Что касается защитных пассивных стратегий, то их цель не в том, чтобы обгонять индекс в булл-ран, а в том, чтобы на автомате копить на старость с меньшими телодвижениями - так как более низкая волатильность портфеля на длинных промежутках позволяет растить капитал и страховать от крахов, которые случаются на рынке с периодичностью каждые 7-10 лет.
В целом я бы рекомендовал делать сравнительный анализ стратегий на промежутках 5,10,15 лет, и лучше даже с скользящими периодами (rolling periods).
И опять я полностью согласен, что портфель рекомендованный Р.Далио розничным инвесторам является неоптимальным, поэтому я и переконструировал его (под себя).
Systematikz Автор
Смотря на каком периоде сравнивать. Если принять период в исследовании с 70-х, то без учета реинвестирования дивидендов выигрывает в 2 раза, если с учетом- то будет примерно одинаково, даже чуть лучше.