Меня зовут Александр, я CDO в «Магнит Фудтех» — одной из вертикалей «Магнит» OMNI, где мы развиваем собственный сервис доставки и самовывоза продуктов из магазинов, а также партнерский сервис доставки товаров из «Магнита» агрегаторами. Помимо «Магнит Фудтех», в контур OMNI входят еще два направления: маркетплейс «Магнит Маркет» и программа лояльности «Магнит Плюс». 

Когда вы заказываете товары на сайте и в приложении, сервис доставки привозит их из магазинов «Магнит». Раньше для сборки заказов выбирался ближайший к покупателю магазин. Причём ближайший в буквальном смысле — по прямой. Это позволяло экономить на курьерах, но во всех магазинах разное количество сотрудников и ассортимент: где-то заказы собирали дольше, а где-то, из-за отсутствия определенных товаров, позиции в заказе меняли на аналоги. Поэтому мы решили поменять логику выбора магазинов, провели в нескольких городах пилотный проект и делимся первыми результатами.

Новый алгоритм

Сначала мы пробовали использовать обновленный алгоритм выбора офлайн-точек, чтобы просто убирать из доступных магазинов те, в которых слишком часто бывали отмены заказов или замены позиций. А потом перешли к более сложной схеме. Когда покупатель оформляет заказ, мы не направляем его в ближайший магазин, а сначала анализируем ключевые метрики за последние N дней для каждого магазина в определенной мультизоне. Это зона, внутри которой идет подбор доступных магазинов для клиента. Таким образом мы анализируем:

  • долю отмен сборки заказов;

  • долю опозданий доставки;

  • ширину ассортимента; 

  • долю идеально собранных заказов (в которых не удалены и не заменены позиции).

Вычислив средний балл, мы добавляем «штраф» за удалённость от клиента. Получаем рейтинг магазинов, из которого берём первый — с наивысшим баллом. 

0,38 — ближайший магазин, 0,76 — более релевантный магазин, согласно метрикам
0,38 — ближайший магазин, 0,76 — более релевантный магазин, согласно метрикам

Изначально расчёт метрик планировалось делать прямо в бэкенде и чуть ли не в реальном времени. Но это потребовало бы нескольких месяцев труда, поэтому большую часть логики мы вынесли в аналитические инструменты, где усреднённые баллы магазинов рассчитываются один раз в день. В бэкенде оставили только логику применения. В результате вместо пяти запланированных месяцев мы запустили пилот всего за месяц.

Со стратегической точки зрения новый алгоритм должен был помочь нам повысить лояльность клиентов. Во-первых, больше заказов будет собираться без замен или отмен, а, во-вторых, меньше задержек при сборке. Как итог: люди чаще будут довольны покупками, и вероятность повторного использования нашего сервиса становится выше, примерно на 1 процентный пункт. Кроме того, идеально собранные заказы помогут поднять средний чек.

Что мы получили в результате теста

Честно говоря, при запуске мы опасались, что длительность доставки увеличится. Но произошла компенсация: средняя дистанция доставки выросла на 500 метров, зато курьеры стали брать за один рейс больше заказов и реже возвращаться в магазины за новой партией (доля рейсов, в которых больше одного заказа, стала на 20 % выше). В результате длительность доставки увеличилась всего на 4 минуты, а доля отмен снизилась на треть.

Назначение заказов на магазины с высоким баллом привело к дополнительному неожиданному эффекту: так как хорошие магазины с точки зрения сборки имеют более качественные операции, у них также более точные данные про наличие товаров, что позволило увеличить доступный пользователям ассортимент на 7,5 %.

Следующие этапы

Далее мы хотим уйти от усреднения четырёх метрик и выбирать магазин для выполнения заказа в зависимости от финансового эффекта от этого назначения. Для каждого магазина в мультизоне пользователя будет рассчитываться балл и определяться магазин с лучшим результатом. Для этого будем учитывать:

  • стоимость доставки из конкретного магазина;

  • средний чек внутри конкретной географической зоны;

  • маржинальность;

  • с помощью модели машинного обучения начнём рассчитывать вероятность отмены заказа и прогноз успешности сборки на основе недавней статистики (ассортимент, складские запасы, заполненность штата).

У нового подхода есть побочный эффект: в некоторых зонах мы получили снижение количества выполняемых заказов в час по пешим курьерам, потому что увеличилось расстояние доставки. Чтобы решить эту проблему, ввели в таких зонах повышенные штрафы за дистанцию в скоринге.

Ещё одна теоретическая ситуация, которая может возникнуть: мы можем привезти в определённую точку большие запасы товаров из расчёта, что их выкупят крупные клиенты, но при переключении магазинов модель может перенаправить такие заказы в другие места. Это может произойти, если, по каким-то причинам, у хорошего в магазина снизились показатели. Например, увеличилась нагрузка в оффлайне и стало меньше времени на сборку онлайн заказов. В итоге крупные клиенты могут столкнуться с дефицитом товара, так как складских запасов в других точках просто не хватит.

В новой версии алгоритма планируем учесть все эти ситуации, как и нюансы ценообразования, синхронизировав работу разных сервисов компании, отвечающих за склады, доставку, персонал и другие направления.

Вернемся на Хабр с результатами, следите за обновлениями!

Комментарии (3)


  1. zubrbonasus
    30.09.2024 14:54

    В магазинах магнит экстра есть свежее мясо, а в магазинах магних лучшая цена только заморозка и пф. Такие моменты учитываются в доставке?


  1. netmans
    30.09.2024 14:54

    Не работают ваши алгоритмы. Видимо всё спотыкается на персонале магазинов, которые в зале ничего не успевают.э, потому что их не хватает. Попробовал сделать заказ в Магните. Обещали привезти через 2 часа, привезли через 3. Товары в пакеты написали как попало. Часть повредили по дороге. Техподдержка двое суток не могла решить вопрос. В приложении не загружались фотографии.


  1. mkurier
    30.09.2024 14:54

    Уважаемые разработчики алгоритмов! Алгоритмы - это прекрасно. Но для интереса пойдите сами поработайте курьерами и сборщиками, просто для интереса, месяцок, не больше... Я курьер в Магните уже почти год. Проблема в том, что на ваши алгоритмы накладывается суровая реальность, где сборщики это не только сборщики, а одновременно и кассиры и грузчики, и приёмщики товара, и всё это за одну зарплату в 25-30 тысяч... Так вот, они настолько бесятся от этого, что стопорят сборку, выключают терминалы сборки, ругают курьеров и весь белый свет за то, что им не платят за сборку заказа, а курьерам за доставку платят... Курьеры за это злятся на сборщиков, сделайте что-то с этим, иначе просто люди друг друга поубивают. Алгоритмы вторичны. Для их работы нужна ещё атмосфера и нормальная система оплаты и условия труда. Люди на стрессе работают за копейки и творят форменный хаос. Передайте это кому нужно, наверх. ВСЁ! ОЧЕНЬ! ПЛОХО! Спасибо что чуть подняли оплату курьерам и сделали платную подачу до магазина. Но всё равно сейчас нормальное количество заказов только по выходным, во время акций или в плохую погоду. В другие дни всё печально: смены выдаются, а заказов нет, а сидеть на улице просто так без заказов - так себе занятие. Раз уже сделали свою доставку - отключайте сторонние агрегаторы и пусть клиенты заказывают через Магнит приложение. Сначала обеспечьте заказами своих курьеров, а потом при невывозе уже можете отдавать на сторону. А то непонятно что: своим курьерам не хватает заказов, а 50% ещё отъедает Яндекс и Купер.