Хомяки приветствуют вас, друзья.

Сегодняшний пост будет посвящен интересному физическому явлению, которое порождает свет в обыкновенной воде. Одни называют это «нейтронной звездой», другие «сонолюминесценцией».
Если в пробирке создать определенные условия, то там родится маленький светящийся пузырек. Его физику описывают разными свойствами, которые трудно себе вообразить. В ходе узнаем, как в домашних условиях собрать установку для получения сонолюминесценции, как правильно настроить систему и рассмотрим трудности, которые могут возникнуть на пути создания такой звезды.



Всё началось с того, что одним прекрасным днем просиживая задницу в просторах ютуба, я нашёл ролик на канале Сергея Матюшенко про интересное явление в основе которого лежит свечение пузырька за счет акустического воздействия. Пересмотрев видео несколько раз, понял что повторить подобное явление как раз плюнуть. Через неделю на моем столе лежали все необходимые детали для сборки действующей установки.

Принцип устройства довольно прост. Сигнал с генератора подается на пьезокерамические излучатели, которые приклеены к пробирке с водой. Система представляет собой сферическую акустическую камеру, где образуется стоячая волна в жидкости. Амплитуда волны в системе регулируется переменной катушкой индуктивности, соединенной последовательно с пьезокерамикой, образуется резонансный LC-контур. Дальше помещаем в камеру пузырек воздуха, находим резонанс, ударные волны воздействуют на пузырь и он светится.

Но на деле все оказалось не так просто, как говорит мой батя — «все просто на бумаге, да забыли про овраги». Эксперимент подобен ящику Шрёдингера, решение задач которых, отняло шесть месяцев. Попробуем подробно рассмотреть каждый элемент установки.



Пробирки. В данном случае нас интересуют круглодонные колбы. Они будут выполнять роль акустической камеры. Теоретически пробирка должна иметь высокую добротность, но как ее вычислить глядя на картинку с химической посудой в интернете, одному богу известно. Решение — заказать сразу несколько видов таких емкостей разных фирм производителей, от советских вариантов до современных загранично-буржуйских.

Самый лучший результат показала, круглодонная пробирка чешской фирмы Simax, объемом 100 мл. Она немного овальная с виду, но зато стекло у нее везде одинаковое по толщине. Советские пробирки проиграли этот параметр, так как визуально видно, как стекло переливается на свету. Как ни старался, в таких образцах мне не удалось зафиксировать сонолюминесценцию.



Самые первые эксперименты проводились с колбами на пол-литра. Продавались они у деда на рынке, потому не приходилось выбирать с объемом. Производитель завод «Дружная горка», старейшее предприятие в своей отрасли, которое существует с 1801 года. Из практики в такой посуде хорошо кипятить бабушкино молоко, да спирт добывать, чем и занимался в свободное от работы время.

Сравнивая пробирки можно наблюдать разницу в размере. С посудой для акустической камеры разобрались.



Далее рассмотрим пьезокерамику, которая подобно динамику будет раскачивать толпу атомов и молекул в объеме воды.

Для справки: пьезоэлектрический эффект был открыт Джексом и Пьером Кюри в 1880 году. Эффект проявляется в деформировании материала, помещенного в электрическое поле, и наоборот. Эти явления еще называют прямым и обратным пьезоэлектрическим эффектом. Следовательно, с этих шайб можно добывать электричество, чем и воспользовался производитель зажигалок для газовых плит, запатентовав свое изобретение. Интересно, дети Пьера Кюри получают гонорар от этих запатентовщиков?!

На рынке пьезокерамика различается размерами и формами. Идеальным вариантом оказалась цельная шайба без всяких отверстий советского производства, диаметром 22 мм и толщиной 4 мм. В процессе экспериментов испытана большая пьезокерамика диаметром 50 мм и толщиной 6.5 мм, подобные кольца можно встретить в конструкции излучателей Ланжевена, которые применяют в производстве ультразвуковых ванн. Мощная вещь, можно до сотни ватт раскачивать.



Следующим этапом при создании акустической камеры лежит соединение пьезокерамики с пробиркой. Прежде чем это сделать, к шайбам необходимо припаять провода. Контакты в советских образцах посеребрённые или даже серебряные, потому они несколько потемнели от времени. Зачищаем поверхности до зеркального блеска. Немного работы с бормашиной, и результат не заставит себя долго ждать. Видны все маркировки и надписи на металле.

Провода будем припаивать с помощью кислоты и мощного паяльника, делать это нужно одним быстрым прикосновением, чтобы ничего не перегреть. Тут видны небольшие пазы под пайку, довольно удобное решение со стороны производителя. Провода обязательно должны быть гибкими. Тонкое напыление серебра очень деликатно к внешним нагрузкам. Жесткие выводы не допустимы, кроме того что металл вырвет, так еще и саму керамику можно повредить.



Для симметричного размещения пьезоизлучателей нужно разметить колбу. Инструменты для начертательной геометрии создаем из подручных средств: угольник, маркер, крутим колбу и отмечаем средину. В любом удобном месте ставим метку. Отрежем небольшой кусок провода или нитки, который равен окружности нашей колбы. Теперь измеряем длину нити и фиксируем результат, 34 см. Делим эту длину на два и получаем 17 см. Ставим метку. Далее совмещаем её с меткой на колбе. Теперь по одному из свободных концов провода осталось отметить место, где строго симметрично, относительно друг друга будут размещаться излучатели. Этот пример показан на 500 мл колбе, так как первые эксперименты проводились именно на ней.



Пора прикрепить излучатели. Делать это будем с помощью двухкомпонентного эпоксидного клея типа «Araldite», у него хорошая адгезия к различным материалам. Время полного застывания примерно сутки, несмотря на то, что на упаковке написано 90 минут. Такой эпоксидной смолой пользуются китайцы при производстве ультразвуковых ванн, и это неспроста. Выдавливаем содержимое тюбиков в пропорциях один к одному. С помощью шпателя тщательно перемешиваем состав до образования однородной массы. Она станет похожа по цвету и консистенции на сгущенку с ближайшего супермаркета. Такая же густая и тянется как нутелла.

Плюс такой массы в том, что она не растекается, минус — молочный цвет. В моем понимании эпоксид должен быть прозрачным, потому за время экспериментов было испробовано как минимум три вида подобных двухкомпонентных смол, и все они показали неплохой результат. Главное, взбивать этот гоголь-моголь медленно, чтоб пузырей не было, они препятствуют хорошему акустическому контакту между излучателем и пробиркой.



Перед нанесением, поверхности необходимо обезжирить с помощью спирто-бензина или ацетона. Угадать количество смолы на излучателе дело не простое, у меня он зачастую растекался. С маленькими колбами ситуация обстоит проще, тут эпоксида нужно в разы меньше, а следовательно, будут меньше запачканы окрестности, руки, одежда и прочее. Напомню, что отмывать подобную гадость то еще занятие.



Итак, акустические камеры готовы. Работа над созданием каждой занимает примерно 2 дня. Теперь эти сосуды можно заполнять водой и пробовать получать нейтронные звезды. Но тут кроется еще один очень важный момент!



Вода. Она тут нужна не простая, а специальная, заранее подготовленная с определенной температурой. Понимание только этого этапа отняло порядка 3-х месяцев моей жизни. Да и фиг с ней, жизней то всё равно 9 штук, прям как у кошек, но это не точно...

В основном воду для эксперимента использовал после осмоса, вам тоже рекомендую обзавестись таким фильтром. Как говорят — «мы есть то, что мы пьем», я к примеру есть пиво, а вы?!

Если фильтра нет, можно использовать дистиллированную воду, если все совсем туго, то и вода из-под крана пойдет, этот вариант тоже работать будет, но его не рекомендую!

Наливаем жидкость с запасом в чистую, заранее вымытую кастрюлю. Остатки старого супа не должны оказаться в нашей воде. Этот этап можно назвать дегазацией. В идеале тут хорошо применить вакуумную камеру, но в хозяйстве её нет, потому кипятим жидкость в течение 30 минут, этого будет более чем достаточно.

Выливаем воду в контейнер для еды, он обязательно должен быть герметичным, важно чтобы в процессе остывания вода не насосала воздуха извне. Закрываем крышку и видим как в первые секунды судок стремится расшириться и вообще взорваться при первой подходящей возможности. Но погоди, тебе нужно остыть! Поместим контейнер в холодную воду примерно на 10 минут. В это время тщательно вымоем акустическую камеру, она должна быть прозрачной как слеза. Шампунь, фейри, используем все моющие средства. За это время вода при остывании сплющила контейнер, то что нужно, она сейчас находится под вакуумом. Помещаем содержимое в морозильную камеру, нам необходимо получить температуру около 5-ти градусов. Если прозевать момент до появления корки льда, процедуру подготовки воды нужно повторить заново, так как в таком случае сонолюминесценцию наблюдать не получалось. С чем это связано — не знаю.

Чистая вакуумированная вода. Наполняем пробирку до горловины. Льем по касательной чтобы лишних пузырьков воздуха не захватить. Итак, вот она, правильная резонансная камера с правильной водой. Идеально прозрачная, холодная и шарообразная линза, в которой 10 из 10 попыток увенчались успехом при создании и наблюдении однопузырьковой сонолюминесценции.



Теперь как делать не нужно и чем это обычно заканчивается. Если просто набрать воду из-под крана или из-под фильтра без дальнейшей дегазации, да еще и наливать ее как попало, то в результате мы будем наблюдать вот такую неудовлетворительную картину. Это недопустимо! Так как наша задача получить один единственный сбалансированный пузырек, который помещается в объем жидкости извне. Но если в пробирке все же появилась газировка, достаем телефон и начинаем фоткать, можно получить красивые кадры с эффектом линзования пузырьков.



Первые попытки дегазировать воду проводились на заранее подготовленном стенде с участием дистиллята и сухого спирта. Чтобы в воду не попадали частицы пыли из воздуха, сверху надевался колпачок. Кипячение воды это еще то захватывающее явление, тут видны все восходящие потоки нагретого вещества…

Результат такого кипячения естественно ни к чему хорошему не привел, так как горловина пробирки не была герметично перекрыта, и в процессе остывания вода снова насосала воздуха и стала непригодной для продолжения дальнейших экспериментов. Но тогда я этого не знал, наливал воду и наблюдал подобную картину повсеместного пузыреобразования. Они были на внутренних стенках, в самом внутреннем объеме и в общем везде где ни попадя.



Итак, как подготовить воду мы уже знаем. При низкой температуре воды на стенках колбы начнет образовываться конденсат, он будет мешать, потому запасаемся салфетками и впитывающими тряпками. Нейтронную звезду из собственной практики удавалось получить при температурах от 5 до 15 градусов по Цельсию. При 10 свечение было ярче всего, при ниже 5 и выше 15 свечения практически не наблюдалось. При охлаждении воды до образования кристаллов льда свечения не было вообще на всем интервале температур.



Резонансная камера установлена, акустические волны воздействуют на пузырек, выключим свет и увидим редкое явление с образованием крохотной нейтронной звезды.

Для регистрации явления на камеру необходимо установить черный фон, и разжиться светосильным объективом, мой старый ультразум оказался практически слепым при съемке этого явления. Это я уже молчу про фокус в одной точке пространства. По этой причине проект был заморожен примерно на полгода до появлении нового съемочного оборудования.

Акустическую камеру на начальном этапе получения сонолюминесценции необходимо подсвечивать, чтобы понимать стабилизировался ли пузырек в центре колбы. На этом этапе информацию по созданию и подготовке акустической камеры можно считать исчерпывающей, потому переходим к генератору и системе управления данной экспериментальной установки.



Поначалу решил взять проверенную схему с ультразвуковой ванны, тут и частоту можно настроить, и мощность получить порядка 60 ватт, то что нужно. Схему разводил под имеющиеся под руками детали. Компактность платы с таким подходом гарантирована. При работе на больших мощностях сразу возникли проблемы.

Первое включение установки на проверку работоспособности, по ошибке произвел с пустой пробиркой. При перестройке частоты, стекло в какой-то момент вошло в резонанс и треснуло. Делать новую колбу было лень, нужно ремонтировать старую, вставляем кусок стекла туда, откуда он выпал, и заливаем сверху эпоксидной смолой. Возвращаем солдата в строй, и продолжаем наблюдать.



Не владея в достаточном объеме информацией, мне казалось что акустический резонанс в колбе напрямую связан с механическим резонансом самой пьезокерамики, но дело в том, что механический резонанс у каждого вида пьезокерамики будет отличаться. Это никак не помешало в течении 5-ти ночей сидеть и пытаться найти иголку в стоге сена.

Все первоначальные расчеты были взяты с потолка, отсюда неверно подобрана катушка индуктивности, частота на генераторе и прочее. Несмотря на это каким-то образом всё-таки удалось добиться стабильного пузырька в центре колбы.

Он под воздействием акустических волн сжимался до такой степени, что иногда просто исчезал из поля зрения. Иногда он начинал отражать свет как серебряная капелька металла. Амплитуды напряжения на излучателях достигали таких величин, что обыкновенный феррит внутри катушки индуктивности, начинал бить током, оставляя после себя небольшие следы ожогов на пальцах. Неоновая лампочка при этом начинает светить еще до прикосновения к излучателю. Такие сильные поля вокруг.



После многочисленных и неудачных попыток получить нейтронную звезду, мне стало интересно, что будет если закачать в акустическую камеру максимально возможную для данной системы мощность. Выкрутим напряжение на блоке питания на максимум, и посмотрим на результат. С первых секунд можно наблюдать сильную кавитацию в воде, которая меняет свои формы…

При перестройке частоты стеклянная колба вошла в резонанс и треснула, принеся себя в жертву ради науки. Содержимое колбы по мере опустошения мало-помалу оставляет свой след на потолке соседей снизу. Кругом потоп, но колба еще держится. Оставляю реальные звуки данного эксперимента в видео.

Наблюдаем за правым пьезоэлементом на резонансной камере. В этот момент он вероятно треснул, и на нем появились вспышки плазмы. Дальнейшая проверка показала, что элемент мертв. Судя по показаниям блока питания, мощность на выжившем пьезоэлементе составляет примерно 180 ватт. На этом этапе съемок я был точно уверен что сонолюминесценцию в домашних условиях получить невозможно и терять больше нечего. Куча потраченного времени, ресурсов и бессонных ночей, так как именно после захода солнца начинались работы в этом направлении…

Хваленый многими эпоксидный клей «Araldite» больших вибронагрузок не выдерживает, несколько раз приходилось переклеивать пьезоизлучатели, но это сейчас идет речь про большую акустическую камеру, которая так и не заработала должным образом.



Дальнейшим решением было связаться с самим Сергеем Матюшенко, который как никто другой знал как устроены принципы данного эксперимента. Как оказалось, он защищал дипломную работу на эту тему, потому любезно рассказал все нюансы при получении сонолюминесценции, за что ему огромное спасибо.

Итак, для начала нам нужен точный задающий генератор, у которого частота не плавает от температуры окружающей среды, для этих целей отлично подойдет синтезатор частот на микросхеме ad9850. На его выходе получаем чистый синус с шагом регулировки в 1 Гц. В хозяйстве такое устройство просто незаменимо, с его помощью можно находить резонансы, проверять рабочий диапазон аудио систем и использовать в других разных экспериментальных направлениях. Диапазон частот варьируется от 1 Гц до 40 МГц. Но, амплитуда выходного сигнала синуса у устройства очень маленькая и ровняется всего 2 вольтам. Для усиления сигнала рационально использовать усилитель.



Так как частоты в рамках эксперимента небольшие, рационально использовать усилитель звуковой частоты. В данном случае используется одноканальный усилитель класса H на микросхеме TDA1562Q. Он довольно качественный, и потрясающе воспроизводит музыку.



Для работы пьезоэлектрических излучателей необходимо высокое напряжение, источник которого в данной в схеме отсутствует. Один из способов получения достаточно высокого напряжения – это использование колебательного контура, настроенного в резонанс.

В данной работе применяется последовательный колебательный контур в котором роль ёмкости играют пьезоэлектрические излучатели, а в роли катушки индуктивности — катушка индуктивности, которая может менять свои параметры путем введения в нее ферритового стрежня. Показания тут могут меняться от 8 до 50 мГн в зависимости от длины и проницаемости феррита. Я использовал медный 0.68 провод, намотанный в 8 слоев. Чем толще провод, тем меньше потерь.

Наличие резонанса в цепи будем определять путем включения в цепь 1-омного резистора, параллельно которому подключим цепь осциллографа. При совпадении частоты генератора и собственной частоты резонанса контура, образованного катушкой индуктивности и емкостью пьезокерамических излучателей, на резисторе наблюдается максимальная амплитуда напряжения, что соответствует максимальному току цепи, что в свою очередь говорит о наличии резонанса.

Полная схема для получения однопузырьковой сонолюминесценции выглядит примерно так. Сигнал с образцового генератора подается на усилитель звуковой частоты, на выходе которого формируется синус заданной частоты амплитудой скажем в 12 вольт. Этот сигнал подается на LC-контур состоящий из переменной катушки индуктивности и акустической камеры где в роли емкости выступают пьезокерамические излучатели. В объеме жидкости формируется стоячая волна, в середине которой образуется интересующий нас светящийся пузырек.



Запускаем установку и помещаем с помощью шприца в объем жидкости маленький пузырек воздуха. Но как узнать нужную частоту при которой формируется стоячая волна внутри акустической камеры!? Всё просто.

Если считать приближённо, то резонанс достигается тогда, когда длина акустической волны равна расстоянию между пьезоэлектрическими излучателями. Если замерять диаметр нашей 100 мл пробирки, то он будет равен 65 мм, это цифра и будет ровняться длине акустической волны необходимой для наших расчетов. Как известно, длина волны распространяется в определенной среде с некоторой скоростью, и определяется выражением: длина волны равна скорости деленной на частоту. Отсюда выражаем частоту, которая равна скорости деленной на длину волны, которая так же равна скорости деленной на расстояние между пьезоизлучателями.

Скорости распространения звука в воде при t=0 равной c=1402,7 м/с. Делим эту цифру на расстояние между излучателями в 65 мм, и получаем частоту в 22.270 Гц

Также стоит учитывать изменение скорости распространения звука в жидкости с изменением температуры. С увеличением температуры скорость звука в жидкости увеличивается, поэтому частота также увеличивается. В дальнейшем, рассчитанная резонансная частота будет отличаться от фактической вследствие сложной геометрии колбы.



Итак, расчеты произведены. Начинаем подбирать частоту и наблюдаем как меняется сигнал на 1- омном резисторе включенном последовательно в цепь. Независимо от частоты, амплитуду сигнала можно менять путем введения ферритового стержня в катушку индуктивности. Очень удобно. С помощью шприца помещаем в объем жидкости пузырек. Их выдавится больше чем нужно, но за счет акустической волны они все притянутся в центр колбы.

Пьезоэлектрические излучатели приклеены на эпоксидный клей, их центры расположены на одной оси. Напряжение, приложенное к двум параллельно расположенным относительно друг друга проводящим поверхностям пьезоизлучателей, вызывает механические деформации (обратный пьезоэффект). Чем больше амплитуда напряжения, тем больше амплитуда деформации пьезоэлемента, которая передается в акустическую камеру.

Микропузырёк воздуха в колбе создаётся при помощи медицинского шприца с иглой. Затем за счёт сил Бьеркнеса, если частота ультразвука близка к резонансной или равна ей, пузырьки начнут перемещаться в центральную часть колбы. Ждем пока пузырек стабилизируется и как бы зависнет в центре акустической камеры. Если пузырек прыгает со стороны в сторону, пробуем сместить частоту в большую или меньшую сторону, добились стабильности, затем медленно поднимаем амплитуду сигнала путем введения ферритового стержня в переменную катушки индуктивности. Тут важно не перебрать, так как пузырек может дестабилизироваться, что приведёт к исчезновению свечения, или он вовсе может исчезнуть. Если свечения все еще нет, пробуем добавить или наоборот забрать пару миллилитров воды из акустической камеры. Так же помогает смещение положения пробирки относительно струбцины которая держит горловину.

Заметьте, что крепление тут осуществляется через резиновую прокладку для уменьшения внешнего влияния. Все эти факторы тем или иным способом влияют на проведение эксперимента.



В одну прекрасную ночь, примерно на 20-ой попытке, создав правильные условия мне таки удалось получить то, ради чего мы тут и собрались.

Сонолюминесценция, кавитационный пузырек, зависший в центральной части колбы начал испускать видимый голубоватый свет. Это казалось чем-то недостижимым и воистину удивительным. Редкое физическое явление, которое за счет акустического воздействия порождает свет в маленьком пузырьке воздуха. Цвет свечения и яркость в дальнейшем могли несколько отличатся. Пузырек мог испускать как белое свечение, так и голубоватое. В некоторых научных работах читал про существование красного свечения, но в рамках проведения данного эксперимента зафиксировать такое свечение не удалось. Тут влияет температура воды, наличие растворенных в ней солей, частота резонанса, амплитуда воздействия на пузырек и прочие факторы, о существовании которых трудно догадываться.

Физика возникновения вспышки света тут возникает из-за того, что мощная ультразвуковая волна в воде приводит к кавитации. Ведь звуковая волна — это чередование повышенного и пониженного давления, и если давление понизится до такой степени, что станет сильно отрицательным, то звуковая волна буквально разорвет воду и создаст в этот момент газовый пузырек. Затем, через полпериода звукового колебания, когда давление, наоборот, становится большим, этот пузырек быстро схлопывается — и в процессе резкого сжатия он нагревается.

Именно в последнее мгновение своего коллапса, когда температура внутри кавитационного пузырька достигает тысяч градусов, он и испускает короткую вспышку света. В нашем случае пузырек остается на месте, сжимаясь и расширяясь в такт ультразвуковой волне, и, испуская тысячи вспышек в секунду, порождает стабильное свечение.



Для справки. Создание этого выпуска заняло рекордные полтора года. Многие пишут в комментариях, почему видео на канале выходят так редко, отвечаю, потому что! Если кто спросит какую пользу может принести данный эксперимент, отвечаю — никакую. Мы с вами просто набрались опыта в еще одном ремесле.

Как говорится – всё гениальное – просто!



Архив с полезностями
Полное видео проекта на YouTube