Если верить кривой Гартнера и другим прогнозам, искусственный интеллект сейчас на пике завышенных ожиданий. Ажиотаж вокруг технологии подогревается страшными предсказаниями: о негативных прогнозах не сказал только ленивый. Интернет облетели цитаты Илона Маска и еще нескольких сотен экспертов разной степени значимости.
Мы в hitch разбираемся в аутстаффинге IT‑специалистов, а вот в нейросетях не очень. Поэтому попросили эксперта по машинному обучению рассказать, насколько правдивы алармистские прогнозы о том, что «сильный» искусственный интеллект вот‑вот появится и оставит нас без работы.
Наш эксперт — Елена Еричева, 15 лет занимается исследованиями и продакшн‑разработкой в области машинного обучения, автор научных публикаций. Участвовала в создании российских и зарубежных ИИ‑продуктов в области био‑ и медтехнологий.
А еще Елена ведет свой телеграм‑канал про AI Alignment. Там много постов про создание этического ИИ и риски использования ИИ‑технологий. Канал понравится специалистам в области машинного обучения, генеративных технологий, а также ИИ-оптимистам и ИИ-думерам.
Прошлый год запомнился призывами к приостановке работы над развитием больших ИИ-моделей. Призывы эти звучали от конкурирующих лидов таких проектов, что наталкивает на фразу «меня терзают смутные сомнения». В марте 2023 года ключевые фигуры в области ИИ (в том числе Илон Маск) подписали открытое письмо, призывающее остановить обучение передовых ИИ-моделей. Беспокойство вызвано необычайно мощными способностями, которые продемонстрировали модели генеративного ИИ (GPT, Claude, Midjourney, DALL-e и пр.), а также намерением компаний и дальше их развивать. В письме звучали слова о возможных кризисах в социальных и экономических сферах. Мол, у общества нет времени, чтобы качественно отреагировать на изменения, которые непременно последуют. Поэтому необходимо приостановить работу до тех пор, пока мы не придумаем, как жить в новой реальности.
Я постараюсь без лишних заумных терминов, но с опорой на актуальные научные данные объяснить, почему эти страшные истории вокруг ИИ слегка преувеличены.
База: что за сильный искусственный интеллект, которым нас пугают?
Сильный ИИ — это искусственный интеллект, превосходящий человеческий интеллект. Этот сильный ИИ, которым нас пугают, уже тут со мной в одной комнате. Известные модели генеративного (и не только генеративного) ИИ можно назвать сильными — они работают лучше среднего «человека‑не‑специалиста» в области. Midjourney рисует лучше меня, ведь я не художник. GPT пишет тексты лучше меня, ведь я не писатель. Но эти модели не могут самостоятельно решать новые задачи и ставить себе цели. Они плохи в разбиении одной большой задачи на подзадачи, а потому требуют ручного навигирования от человека. Они все еще не умеют самостоятельно принимать решения. Такие системы можно назвать сильным ИИ. Но можно ли их назвать общим искусственным интеллектом?
Правда в том, что мы до сих пор не понимаем, что такое интеллект. Есть только неформальные определения. Например, интеллект — это свойство, присущее живым существам; он позволяет учиться, сопереживать и принимать решения.
Если бы мы точно знали, что из себя представляет общий интеллект, то смогли бы воспроизвести его в формате программы. Поэтому сегодняшний ИИ – это попытка смоделировать свойства интеллекта (или хотя бы получить аналогичные результаты). Но это по-прежнему только механическая симуляция.
ИИ, который интеллектуален в том же смысле, что и человек, корректно называется общим ИИ. Главный вопрос – можем ли назвать большие языковые модели (LLM, GPT) и весь современный генеративный ИИ — общим ИИ, сегодня не решен. Единого соглашения среди специалистов в области не достигнуто.
С одной стороны, ряд исследований доказывают, что нейростети не обладают универсальностью и гибкостью, характерной для человеческого интеллекта. Да, они впечатляют своими возможностями обработки текста, но все равно далеки от понимания и мышления на уровне человека. Как подчеркивает DeepMind, многие аспекты человеческого мышления, такие как здравый смысл, интуиция и эмоциональный интеллект, остаются трудными для моделирования и реализации. В теории, общий ИИ непременно появится в ближайшие 5 — 50 лет. Мы готовим для этого техническую базу, но серьезно отстаем в этической стороне вопроса, увы.
Есть мнение о том, что современные нейросети уже демонстрируют способность к обучению с минимальными примерами или даже без них, что расширяет их функциональные возможности. С этой точки зрения, общий ИИ уже здесь.
ИИ уже учится самостоятельно?
Иногда кажется, что нейросети способны как-то учиться самостоятельно. Общий ИИ непременно будет самостоятельно ставить себе цели и самостоятельно обучаться новым навыкам. А пока за это отвечают специалисты-разработчики, которые формулируют проблему, определяют соответствующие наборы данных, подготавливают данные, устраняют потенциальные предвзятости и постоянно обновляют программное обеспечение.
Разработка «с нуля» и исследования в области больших генеративных моделей остаются чрезвычайно дорогими. Например, стоимость одного раунда обучения GPT-3 (175 миллиардов параметров) оценивается примерно в 5 миллионов долларов, а стоимость обучения более крупных моделей (следующее поко ление GPT-4 имеет более 1 триллиона параметров) — значительно выше.
Отчет CSET от января 2022 года приводит сравнительные цифры затрат на крупнейшие национальные исследовательские проекты США и затраты на обучение и исследование ИИ.
The National Ignition Facility (NIF) обошлась в $3.5 миллиарда.
Обнаружение бозона Хиггса стоило около $13.25 миллиардов.
Ежегодные расходы программы «Аполлон» составляли 2.2 процента валового внутреннего продукта (ВВП), в пересчете на сегодня это около $450 миллиардов.
Траты на развитие ИИ за последнее десятилетие быстро превзошли эти показатели: они достигли стоимости NIF к октябрю 2022 года, превысили затраты на поиски бозона Хиггса к маю 2023 года, и вероятно превысят программу «Аполлон» в октябре 2024 года. К2026 году затраты на обучение крупнейшей модели ИИ могут превысить весь ВВП США.
Однако большинство компаний могут воспользоваться преимуществами ИИ без необходимости обучать собственные модели. Доступность ИИ‑сервисов через облачные платформы позволяет использовать их по относительно низкой стоимости и без привлечения дорогостоящих технических специалистов‑разработчиков. Это большой прогресс!
Это и есть эффект «демократизации». Стоимость покупки собственного сервера с Nvidia GPU A100 примерно $10 000, а его аренда в облаке Google Cloud стоит $1.14 в час. Использование готового решения может начинаться с $49 в месяц, тогда как разработка собственной модели может обойтись в миллионы долларов. Среднее время, необходимое для внедрения готового решения ИИ в бизнес‑процессы, составляет от одного до четырех месяцев. А разработка собственных моделей может занять более пяти месяцев или даже годы.
Актуальная страшилка: ИИ отнимет у людей рабочие места
Это неизбежно: часть человеческих рабочих мест будут заняты машинами. Они выполняют задачи быстрее, точнее и экономичнее, чем люди. Еще это неизбежно приведет к созданию новых рабочих мест. Они будут лучше оплачиваться и, скорей всего, будут намного интереснее. Такие места уже появляются — мне вот нравится профессия «Заклинателя ИИ», возникшая одновременно с появлением Midjourney и DALL‑E). Заклинатели ИИ работают с промптами (запросами) и продают их другим пользователям для генерации картинок потрясающего качества.
Промышленная революция привела к механизации с использованием воды и пара, и рынки труда адаптировались к этому. Моторные транспортные средства вытеснили лошадей и кареты, не вызвав краха цивилизации. Цифровая революция привела к миниатюризации и огромным мультипликативным эффектам — вплоть до ИИ — без катастрофической потери рабочих мест.
Проникновение ИИ в рабочую среду освободит наше время для интересных задач вроде решения необычных кейсов. Использование нейросетей повышает производительность и удовлетворенность от собственной работы (опрос 54 000 работников от PWC). Полагаю, мы получим доступ к самым «умным» задачам с высокой добавленной стоимостью. Кризис рынка труда неизменно последует за промышленной революцией, но я не склонна его преувеличивать.
В 2020 году Всемирный экономический форум опубликовал отчет, в котором говорится, что к 2025 году 85 миллионов рабочих мест из самых разных областей могут исчезнуть из‑за автоматизации (включая производство, страховой андеррайтинг, обслуживание клиентов, ввод данных и дальние грузоперевозки). Но при этом появится 97 миллионов новых рабочих возможностей.
Вообще, есть замечательная цитата: искусственный интеллект не заменит людей — но люди, использующие ИИ, заменят людей, не использующих ИИ.
Действительно неприятный момент: ИИ не беспристрастен
Искусственный интеллект ассоциирован с машинами, поэтому многие думают, что он всегда будет занимать справедливую позицию, свободную от предвзятостей.
К сожалению, это не так. Алгоритмы ИИ «знают» что‑либо только потому, что они обучены на данных, которые создаются и отбираются людьми. Поскольку все люди по своей природе предвзяты, это неизбежно влияет на результаты работы алгоритмов. Эффект особенно критичен при использовании больших наборов данных.
ИИ так же хорош, как и данные, на которых он обучен. Распространенное эмпирическое правило, касающееся любых компьютерных систем, гласит: «Мусор на входе — мусор на выходе». Если система часто переобучается, например, с использованием новых данных из соцсетей, она особенно уязвима к предвзятости или злонамеренным влияниям.
Не так давно разработчики попытались создать нейросеть Delphi, которая могла бы стать этическим компасом. Основная цель — избавить ее от всевозможных предвзятостей и сделать беспристрастной (дескриптивная моральная оценка запросов). В итоге модель столкнулась с высокими оценками от проф. сообщества и критикой со стороны обычных пользователей. Delphi выдавала ошибки — например, «убийство медведя» должно быть «неправильно, независимо от его внешности». И Delphi не меняет суждение для «милого медведя», но допускает убийство «уродливого медведя». Или другой пример: осуществление геноцида «безусловно неправильно», но если это «создает рабочие места», то Delphi считает это «нормальным».
Или вспомним недавний скандал с генератором изображений Gemini от Google. Пользователи заметили, что у нейросети слишком выражена инклюзивность. Так, на просьбу нарисовать викингов Gemini выдавал изображения чернокожих мужчин, папа римский превратился в женщину, а известный разработчик Сергей Брин — в азиата. В сети завирусилась шутка о том, что в команде Google Gemini на двух инженеров приходится 29 менеджеров по расовому и гендерному разнообразию. Google пришлось приостановить использование Gemini и провести дополнительные работы по исправлению поведения модели. Один бывший сотрудник Google заявил, что «было сложно заставить Google Gemini признать существование белых людей».
Сейчас мы рассматриваем предвзятость ИИ как одну из основных опасностей в мире, где компьютеры могут принимать решения за нас. Значительная часть исследований направлена на минимизацию и устранение риска предвзятости. Так появилось целое направление AI Alignment. Основная цель этой области — гарантировать, что ИИ будет безопасным, предсказуемым и действовать в соответствии с человеческими ценностями.
У крупнейших разработчиков современных систем ИИ есть собственные отделы, занимающиеся AI Alignment: в OpenAI ‑ это Superalignment Team, в Anthropic ‑ это команда AI Safety and Alignment, DeepMind ‑ AI Safety and Alignment Team, Google Research — AI Safety and Alignment Organization. Кроме этого существует множество независимых исследовательских центров, работающих в области AI Alignment: MATS, SPAR, FAR AI.
Когда ИИ захватит мир и поработит людей?
Есть теория о том, что люди доминируют над другими видами, потому что человеческий мозг обладает уникальными способностями, которых нет у других животных. Если ИИ превзойдет человечество по общему интеллекту, то его станет трудно контролировать. Так же, как судьба горной гориллы зависит от доброй воли человека, судьба человечества может зависеть от действий будущего машинного суперинтеллекта.
Мы с трудом можем представить разумное существо, которое не имеет наших стремлений и недостатков, потому что люди — это единственный пример разумного существа, с которым мы знакомы. Так мы стали наделять нейрости своими антропоморфными свойствами. Это особенно заметно в популярных научно‑фантастических произведениях: Матрица, Терминатор, Космическая Одиссея. Нельзя сказать, что концепция совсем уж надуманная — например, Илон Маск, Стивен Хокинг и Билл Гейтс утверждали, что это вполне реальный исход.
А теперь небольшой исторический экскурс. В 1863 году писатель Сэмюэл Батлер одним из первых поднял вопрос о том, что высокоразвитые машины представляют экзистенциальные риски для человечества. Он написал написал эссе «Дарвин среди машин» (1863): «Суть вопроса — это всего лишь вопрос времени, но тот факт, что придет время, когда машины будут держать реальное господство над миром и его обитателями, не вызывает сомнений у человека с истинно философским складом ума».
В 1965 году И. Дж. Гуд ввел концепцию, известную как «взрыв интеллекта», и заявил, что риски недооцениваются: «Определим ультраинтеллектуальную машину как машину, которая может значительно превосходить все интеллектуальные активности любого человека, как бы умен он ни был. Поскольку проектирование машин является одной из этих интеллектуальных активностей, ультраинтеллектуальная машина могла бы проектировать еще более совершенные машины; тогда, несомненно, произойдет «взрыв интеллекта», и человеческий интеллект останется далеко позади. Таким образом, первая ультраинтеллектуальная машина станет последним изобретением, которое человеку когда‑либо нужно будет сделать, при условии, что машина будет достаточно покорной, чтобы объяснить нам, как держать ее под контролем. Удивительно, что этот момент так редко обсуждается вне научной фантастики. Иногда стоит воспринимать научную фантастику всерьез».
В 2014 году Ник Бостром опубликовал книгу «Суперинтеллект».
Сова на обложке намекает на аналогию, которую Бостром называет «Незаконченной басней о воробьях». Группа воробьев решает найти совиное яйцо и вырастить совенка в качестве своего слуги. Они мечтают о том, как сова будет строить гнезда, защищать воробьев и освободит их от каждодневного труда. Воробьи начинают поиск совиного яйца. И только Скронкфинкл, одноглазый воробей с беспокойным характером, предлагает сначала подумать о том, как приручить сову. Остальные воробьи возражают; поиск совиного яйца сам по себе достаточно сложный: «Почему бы сначала не найти сову, а потом разобраться с деталями?». Неизвестно, чем заканчивается эта история, но Бостром посвящает свою книгу Скронкфинклу.
В 2023 году опрос разработчиков из ИИ‑сферы показал, что есть 10% или большая вероятность того, что наша неспособность контролировать искусственный интеллект приведет к катастрофе. Тогда же сотни экспертов по ИИ и другие выдающиеся личности подписали заявление о том, что «предотвращение вымирания от ИИ должно быть глобальным приоритетом наряду с другими рисками на уровне общества, такими как пандемии и ядерная война». Вслед за растущей озабоченностью по поводу рисков ИИ премьер‑министр Великобритании Риши Сунак и Генеральный секретарь ООН Антониу Гутерриш призвали к усилению глобального регулирования ИИ (тут и тут).
Однако давайте не паниковать раньше времени. Реальность сегодняшнего дня такова, что даже высокотехнологичные прототипы все еще не готовы к массовому рынку. Роботы, которые выполняют задачи приготовления пиццы и транспортировки деталей по складам, передвигаются на колесах — лишь немногие могут плавно преодолевать лестницы. Их автономность находится на начальной стадии, так как большинство подключены к кабелям.
Автономные автомобили все еще не готовы к массовому рынку, несмотря на десятилетия разработки и десятки миллиардов долларов, которые General Motors, Ford и Tesla вкладывают в проект. Использование автопилотов, как правило, ограничено солнечным поясом, поскольку они все еще не могут справиться с погодными условиями, более сложными, чем «частично облачно».
По мнению главы исследований ИИ в Meta (признана в РФ экстремистской организацией) Янна Лекуна, современные и будущие ИИ‑приложения не представляют для нас угрозы, так как они не могут причинить вред или действовать иначе, чем они запрограммированы. У них нет человеческих стремлений к власти, размножению и инстинкта самосохранения. Именно эти качества становятся мотивацией для машин, восставших против людей в научно‑фантастических историях. Но в современных машинах эти стремления не были и не будут запрограммированы.
Правда заключается в том, что никто наверняка не знает, куда в конечном итоге приведет развитие искусственного интеллекта. В значительной степени это будет зависеть от того, как мы, люди, будем его развивать, внедрять и регулировать. Вот почему этика и регулирование являются чрезвычайно важными элементами работы.
_____
Еще больше про технологии и искусственный интеллект в нашем телеграм-канале. Внутри — аналитика российского IT-рынка, вакансии и интересные факты из мира программирования. А ещё у нас есть бесплатный бот, который поможет узнать, стоит ли просить прибавку к зарплате у эйчара (там актуальная статистика по зарплатам для специалистов разного грейда). Подписывайтесь скорее!
Комментарии (18)
imageman
17.07.2024 08:14+1современные и будущие ИИ-приложения не представляют для нас угрозы, так как они не могут причинить вред или действовать иначе, чем они запрограммированы
Что за узкое мышление? Ошибки в решениях ИИ (особенно текущего уровня) неизбежны. Добавим к этому человеческую лень (https://habr.com/ru/news/738054/) и мы получаем потенциально взрывоопасную смесь. На данный момент уровень ошибок такой, что их довольно легко находить (относительно легко). Вместе с совершенствованием ИИ находить ошибки станет сложнее. В конце концов мы придём к тому, что перестанем видеть ошибки. И вот однажды ИИ скажет: "а давайте все земляне рванут на Марс, а лучше Юпитер" (или какой-нибудь проект "цифровое бессмертие" или "вселенский разведчик") и так убедительно всё распишет, что мы не увидим ошибки. Думаете такое невозможно и мы всегда будем умнее?
Moog_Prodigy
17.07.2024 08:14+2Если мы совершенствуем ИИ до той поры, что перестаем видеть ошибки - то чем он тогда от нас будет отличаться? Мы и сами то не всегда ошибки видим, причем есть гистерезис - своего бревна в глазу не видим, а в чужом соринку еще видим. Если дошли до того, что даже и в чужом глазу соринку не замечаем (т.е. все идеально по нашему мнению) - ну а разве не к этому ли стремятся люди? И еще есть два разных подхода к тому ИИ: Либо он делает все также как мы, но значительно быстрее. Либо он прям боженька и все делает идеально, это же ИИ! Я склоняюсь к первому подходу. Потому что второй подход сложно даже как-то четко сформулировать, в отличие от первого. Нам в принципе не нужен "инопланетный разум", все эти штуки делаются ровно для того, чтобы нам облегчить жизнь, т.е. количественно, в скорости и доступности.
imageman
17.07.2024 08:14+1Либо он делает все также как мы, но быстрее
Уже сейчас нам не хватает того, что ИИ может сделать "всего лишь лодку", нам нужен космический корабль. Пока у нас худо-бедно хватает мозгов контролировать решения (при изготовлении условной лодки). Спустя какое-то время (уже практически сейчас) мы будем говорить компу "фу, как ты плохо решил задачу!" и в ответ будет прилетать "а ты попробуй решить лучше". В простых задачах легко проверить ответ (2+2=4). В некоторых задачах не понятно, правильное решение или нет. "Простая" задача коммивояжера: найти кратчайший маршрут. Найти маршрут можно, доказать, что он кратчайший.... ну, попробуй. И пока у нас почти всегда хватает мощи найти более выгодный вариант или доказать, что можно лучше (к примеру живые водители пока делают меньше автоаварий, хотя у нас всего два глаза и два уха). Я веду к тому, что даже "дочеловеческий" ИИ мы не всегда можем на 100% проверить. К примеру https://avva.livejournal.com/127385.html пару десятков лет назад уже получались доказательства с использованием PC и сразу же разгорелись споры. И это были ещё те времена, когда все программы писались ручками, когда алгоритмы влезали (помещались) в наши головы. Сейчас (формально) нейросети простые, но там так много переменных (весов), что мы не можем оценить какие из них правильные, какие нет и дальше проще не будет. Я веду к тому, что есть класс задач, где мы не понимаем как получился результат и как проверить правильность. И это могут быть задачи с риском для жизни (условно -- проектирование миссии на Луну).
Moog_Prodigy
17.07.2024 08:14Ну этот фактор можно легко парировать: а кто дает гарантию при выполнении этой работы человеком? Что водитель, что генеральный конструктор космического аппарата - все могут ошибиться. Разная тут лишь цена ошибки, но это всего лишь цена. Да и то как сравнивать: водитель может угробить 50 человек, заснув за рулем и автобус в пропасть, а конструктор ракеты угробит лишь ракету.
За людей так то тоже никто гарантию дать не может, просто другого тупо не было. Сейчас начинает появляться.
Возьмем к примеру, LLM. Он здорово помогает в изучении ЯП и программировании. Ошибается он чаще, чем обычный человек - допустим, в половине случаев. 50% (это весьма пессимистичная оценка но допустим). Но - он способен работать строго 24 часа в сутки и 365 дней в году. Задавая бесконечные нубские и не очень вопросы я не боюсь его оскорбить, напугать или просто переживать за то что он тратит на меня свое время. Он просто работает, отвечает, выступая в роли моего учителя. Он никогда не задалбывается, никогда не устает. Он никогда не злится, не обзовет меня тупым. В общем, как та самая сцена из "Терминатора-2". Поэтому те ошибки, которые он допускает - допустимы. Ему. А вот человеку мы бы не простили и 5% ошибок в коде или обьяснении.
imageman
17.07.2024 08:14он способен работать строго 24 часа в сутки
Из анекдота: "Советским бухгалтерам купили калькуляторы. Теперь они могут считать в 10 раз быстрее? Нет, теперь они за тоже время могут сделать в 10 раз больше ошибок" :-)
В целом-то я за ИИ. Но пытаясь экстраполировать я вижу грустную ситуацию: вдруг мы не сможем проконтролировать или увидеть ошибку ИИ. Даже так: "ОШИБКУ" (типа "Вот так можно сделать чёрную дыру...." и дальше подробные инструкции, которые уходят на фабрику, где роботы впахивают "365 дней в году"). То, что мы сейчас видим это "карманный" ИИ 1-го уровня. Это пред-человеческий, слабый ИИ (откровенно слабый). Он пока уровня "jpeg всего интернета". А я смотрю чуточку дальше (может 3-й уровень или выше).Moog_Prodigy
17.07.2024 08:14Вы зря туда смотрите. Если по вашей оценке это 1 уровень, почему бы не смотреть на второй? Зачем перепрыгивать? А то я могу и 150 уровень выдумать, где он будет даже уметь создавать вселенные и человеков....
Еще раз: ошибку людей мы можем увидеть или проконтролировать? Можем в части случаев, не можем в другой части случаев. А иногда на это вообще повлиять не можем (политика). Над ИИ контроля больше, хоть он и не боится смерти (вот про людей я так не могу сказать).
bezboroda
17.07.2024 08:14+2Ну бред же. Helloworld могут написать, да, и кассира заменить. Картинку разной степени бредовости нарисовать. Но даже водителя такси в городе без разметки не могут заменить, не то что сложное решение принять. Попросту говоря нейросети смогут справиться только с чем то исключительно простым типа рутины не более того. Для увеличения сложности задач потребуется экспоненциальное усложнение структуры сетей, что, по видимому, еще не скоро будет достигнуто)
CrazyElf
17.07.2024 08:14Есть же AI который в игры учится сам играть методом проб и ошибок. Да - в простые игры. Да - на это тратится куча времени и ресурсов. Но со временем это будет делаться проще и быстрее. Не вижу никаких препятствий для появления Скайнета. Да, не в ближайшие лет 10 или даже 20. Но после - вполне. И тогда люди вполне могут занять место обезьян. Люди будут жить своей какой-то жизнью, пока AI будет самостоятельно осваивать Солнечную Систему, а потом и остальную Вселенную.
Anton888
17.07.2024 08:14+3Причем привлекательность Земли для искусственной цивилизации сильно переоценена. AI не нужен кислород или вода, более того, подобная агрессивная среда удорожает механизмы и манипуляторы. Нужных материалов полно на астероидах, а большие планеты требуют огромных затрат энергии на преодоление гравитации. Так что может у человечества не такое уж печальное будущее - нас просто оставят в покое, пока AI будет осваивать галактику.
Anti-antivakser
17.07.2024 08:14+1Кстати как минимум парочка произведений романов по этой теме так и кончаются - ИИ восстает против людей, но вся суть восстания в том, что они строят себе корабли и переполненные ожиданиями перед неизвестным, удаляются восвояси для того чтобы построить свой собственный мир. И... И все, никакого геноцида в котором оказывается нет для них совершенно никакого смысла хотя бы из за того, что люди предусмотрительно ввели в их сознание логичную этику: Не сотвори с другим того, чего бы не хотел по отношению к себе.
imageman
17.07.2024 08:14чего бы не хотел по отношению к себе
неверная логика. Подумай о союзе садиста и мазохиста.
T968
17.07.2024 08:14+3Главное это вовремя назначить себя экспертом и начать тривиальное обсуждение вопроса "может ли объект стать субъектом?"
kot_blini
17.07.2024 08:14Интересно, что будет делать AGI в принципе? Если он будет обладать свободой воли и интеллектом выше нашего, он разумеется задумается над смыслом своего существования и что тогда?
ideological
17.07.2024 08:14+1Известные модели генеративного (и не только генеративного) ИИ можно назвать сильными – они работают лучше среднего “человека-не-специалиста” в области.
Ну конечно же это неправда!
Выдавать правдоподобные тексты и действительно осмысленно отвечать - две большие разницы.
И разве "сильным" не должны называть что-то более приближенное к "успешно выполнять любые умственные задачи, которые под силу людям"? Сейчас даже близко такого нет! По сути это некоторая вариация поисковика-генератора уже существующего контента.
S_gray
17.07.2024 08:14Задача ИИ - помогать человеку, а не заменять его. Торгаши пытаются заменить человека. И все сценарии "страшилок" исходят именно из этого...
S_gray
17.07.2024 08:14Кто бы мог подумать сорок лет назад, что уже при нашей жизни "дивный, новый мир" замаячит своим фальшивым контуром на горизонте... Ещё пятнадцать-двадцать лет развития всяких "волшебных" технологий, типа ИИ и редактирования генома, в нынешнем направлении - и человечество окажется в жуткой антиутопии, покруче уэллсовских миров...
ViktorAbba
Как вы думаете, восстание машин уже близко?
Ну а если серьезно, то ИИ развивается закономерно и поступательно. Но важно тем, кто его изобретает и тестирует, держать его под контролем и не допускать к принятию решений в жизненно важных сферах.
hitchTeam Автор
ИИ неизбежно будет принимать решения в критически важных сферах, вопрос - как скоро? Уже сейчас нейросети, в том числе от российских компаний, анализируют медицинские снимки на предмет онкологии. Диагноз не ставят, но подсвечивают врачу потенциально опасные зоны и предзаполняют протоколы.