Читатель спрашивает:
Я как-то присутствовал при разговоре о сверхновой возрастом 12 миллиардов лет, и отвечая на вопрос «откуда известен её возраст?», сказал, что это связано со скоростью света и со временем, которое требуется ему для того, чтобы пройти определённое расстояние. Но что, если бы мы находились в другой части Вселенной? Как бы мы тогда узнали возраст этой сверхновой? И не был бы он тогда другим?


Разумеется, скорость света конечна, и это обстоятельство может многое рассказать нам о некоторых удалённых объектах Вселенной.

image

Перед вами ярчайшая звезда ночного неба: Сириус. Она находится на расстоянии 8,6 световых лет от нас — то есть, свет, приходящий от неё к нам в настоящее время, был испущен ею 8,6 лет назад. Это также значит, что если бы кто-либо в районе Сириуса мог видеть нас – он видел бы Землю такой, какой она была 8,6 лет назад.

Достаточно просто определить возраст света от звезды, который мы видим. Мы измеряем расстояние до звезды, и, зная скорость света, можем подсчитать время. Это верно для двух любых точек во Вселенной, которые за время прохождения света между ними остаются примерно на одном и том же расстоянии друг от друга.

image

Также можно рассчитать расстояния до разных объектов, зная, как они устроены и работают. К примеру, некоторые типы звёзд со временем изменяют интенсивность свечения, и существует тесная взаимосвязь между периодами изменения яркости и их наблюдаемой яркостью.

Если можно измерить, сколько времени занимает цикл изменения светимости звезды от яркой до тусклой и обратно, и можно определить класс и тип данной звезды — то можно сказать, на каком расстоянии от нас она находится.

image

Этот метод пригоден для измерения расстояний од звёздных кластеров и не очень далёких галактик. После этого другие подробности взаимоотношений разных свойств галактик (вращение, флуктуации поверхностной яркости, разброс скоростей) позволяют нам вычислять расстояния до ещё более удалённых объектов Вселенной.

image

Кроме прочего, мы можем использовать сверхновые (в частности, хорошо известные сверхновые типа Ia, имеющие стандартную яркость), для очень точного измерения расстояний до самых удалённых частей Вселенной. Даже если они взорвались миллиарды лет назад.

Но есть проблема с простым измерением расстояния до объектов и попыткой рассчитать прошедшее время тем же методом, которым мы пользовались, например, в случае Сириуса. Проблема в следующем: большая часть Вселенной не остаётся на одном и том же расстоянии от Земли, даже приблизительно. Вселенная расширяется!

image

Расширяется само пространство – объекты, которые не связаны друг с другом гравитацией, со временем отдаляются друг от друга. Это, конечно, усложняет задачу, и на протяжении почти всего 20-го века чинило серьёзные препятствия к определению того, как далеко мы заглядываем в прошлое. Ведь мы не могли просто взять удалённую галактику, измерить расстояние до неё, и сразу же узнать:
  • как далеко она была от нас в тот момент, когда испустила свет
  • как далеко она от нас сейчас, когда этот свет дошёл до нас
  • сколько времени свету понадобилось на то, чтобы преодолеть это расстояние


Для этого необходимо получить больше информации, чем простое текущее расстояние до объекта.

image

Точнее, два факта. Во-первых, нужно знать полную историю расширения Вселенной, то есть, скорость расширения в тот момент, когда свет покинул удалённый объект, скорость расширения в данный момент, когда мы принимаем этот свет, и скорость расширения между двумя этими событиями.

Звучит сложно? На самом деле, всё проще. Общая теория относительности Эйнштейна, говорящая о гравитации, просто не оставляет нам много вариантов. Если мы можем измерить текущую скорость расширения (что мы умеем делать с 1920-х годов), и можем посчитать текущее энергетическое наполнение Вселенной, мы сможем рассчитать всю историю расширения Вселенной от самого Большого взрыва.

image

А второй факт? Нам нужно измерить степень красного смещения света, пришедшего к нам от объекта. Поскольку структура Вселенной расширяется, длины волн света также растягиваются, и свет становится краснее. Но поскольку известно, что весь свет претерпевает красное смещение, и мы знаем, как ведут себя атомы, звёзды и свет, то нам остаётся только провести соответствующие измерения и узнать, каким образом происходит красное смещение света от удалённого объекта.

image

И всё. Расстояние до объекта можно измерить разными методами. Расстояние до сверхновой вычисляется через её световую кривую, а также через красное смещение (для сверхновой – через спектральный анализ).

Берём два этих факта, добавляем известную историю расширения Вселенной, и получаем количество времени, прошедшего между испусканием начального фотона и прибытием его в наш глаз.

image

Именно так мы узнаём, как давно случилось то или иное событие во Вселенной. Поскольку мы знаем, что с момента Большого взрыва прошло 13,82 миллиарда лет, можно подсчитать возраст Вселенной в тот момент, когда свет был испущен любым из интересующих нас объектом.

Комментарии (10)


  1. vicnaum
    03.01.2016 17:50

    Кстати, а есть ли информация, с какой стороны от нас произошел данный взрыв?
    Ну т.е. в какую сторону мы «расширяемся», и с какой находится тот «центр» мира.


    1. Enessar
      03.01.2016 20:03

      «Взрыв» произошел везде и одновременно, поэтому в какой бы точке мы не находились, всегда кажется, что находишься в центре, а расширение происходит во все стороны одинаково.


      1. wbnet
        03.01.2016 21:17

        У меня это в голове не укладывается от слова «абсолютно».


        1. Alex_At_Net
          04.01.2016 00:41

          Возьмите резинку, поставьте на ней несколько точек, посадите муравья на одну из точек и начните её растягивать. В какую бы точку вы не поместили систему отчета (муравья), остальные от неё будут отдаляться. Поэтому находясь на резинке, невозможно выбрать такую точку, относительно которой имеет смысл говорить о неизоморфности одномерного пространства (центре резинки). Предположим теперь, что края резинки растягиваются очень быстро (быстрее скорости света). В этом случае у нашего одномерного муравья даже не будет шанса увидеть этот край и когда-нибудь до него дойти. С нашей вселенной то-же самое, только в трехмерном пространстве.


          1. wbnet
            04.01.2016 18:20

            Не расширение не укладывается, а начальные условия расширения. Тут слово «взрыв» капитально с толку сбивает, оно (по моему) совсем не подходит к возникновению изначально бесконечной вселенной без какого-то центра. Не работает логическое рассуждение основанное на «растояние = время»: берем сверхновую зародившуюся через 10% времени существования вселенной — но она же должна была быть ближе на 90% к нашей точке отсчета в момент своего взрыва ииии… и тут логика объявляет забастовку.


            1. Alex_At_Net
              04.01.2016 19:44

              > изначально бесконечной вселенной
              Не бесконечной. Мы не знаем, конечная она или нет, но если она бесконечна, то скорее в смысле кольца (сферы в некотором многомерном (больше 4?) пространстве), нежели в смысле линии (плоскости).

              > без какого-то центра
              Не известно. На текущем уровне наблюдений мы не можем его установить. Но скорее всего его нет в привычном понимании, как границы в пространстве. За пространством нет пространства. Принимая аналогию с муравьем и резинкой, предположим что резинка — это огромное кольцо.

              > зародившуюся через 10% времени существования вселенной — но она же должна была быть ближе на 90% к нашей точке отсчета в момент своего взрыва

              Согласно современному пониманию, расширение вселенной зависит от плотности и пропорции материи/энергии. Например, начальная стадия (инфляция) могла быть очень быстрой из за большой энергии заключенной в малом «объеме». На сколько быстрой? Примерно на 45 порядков больше, чем расширение сейчас — ru.wikipedia.org/wiki/Инфляционная_модель_Вселенной

              > и тут логика объявляет забастовку.

              Допустим резинка с муравьями в точках A и B растягивается. Тогда расстояние между муравьями увеличивается. В момент времени t из точки A пускаем муравья (фотон) в направлении B. Муравей ползет с постоянной скоростью. Он или доползет до точки B, либо нет — зависит от коэффициента расширения и скорости муравья (поскольку расстояние от него до точки B постоянно растет).


              1. wbnet
                05.01.2016 10:14

                Не знаю как правильно сформулировать, но попробую. К вашим (не вашим, но понятно) «неизвестно» добавлю — неизвестно что именно расширяется и почему оно так делает/начало это делать. Расширяющееся пространство кажется какой-то извращенной математической абстракцией вроде эпициклов, наверченной на пустом месте и принимаемой без сомнения, потому что объясняет большинство наблюдений.


                1. Duduka
                  05.01.2016 11:59

                  … м-м, что объясняет, позвольте спросить!? «Расширяющаяся Вселенная» — это символюк, не озвучивается ни причина, ни механизм, ни дальнейшая кривая изменения скорости(или ускорение = 0? тогда, почему оно равно 0?). Если факты, их объединяют под общим заголовком «РВ», теория его, пока, не озвучена.


                  1. wbnet
                    05.01.2016 16:32

                    Ну я про то же. Расширение объясняет наблюдения расширения ) Вроде как начинаются какие-то вторичные весьма умные объяснения (в том же ролике), но если копнуть поглубже, то за этими объяснениями почти ничего нет и все высосано из пальца (как в свое время наворочены эпициклы под «объяснение» видимого движения планет — математически они правильны и пользоваться можно даже, но логика тоже отказывает при попытке представить, откуда они могли взяться и почему). Это раздражает. Меня, по крайней мере.

                    P.S. Я не очень серьезно и без фанатизма.


                1. Alex_At_Net
                  05.01.2016 12:02

                  Понятно :-) Ну может тогда интересно будет разобраться с научной философией, неверное… Не уверен. Успехов тогда, тут я уже не помощник — сам не очень.