Тема сегодняшнего разговора — чему же научился Python за все годы своего существования в работе с изображениями. И действительно, кроме старичков родом из 1990 года ImageMagick и GraphicsMagick, есть современные эффективные библиотеки. Например, Pillow и более производительная Pillow-SIMD. Их активный разработчик Александр Карпинский (homm) на MoscowPython сравнил разные библиотеки для работы с изображениями на Python, представил бенчмарки и рассказал о неочевидных особенностях, которых всегда хватает. В этой статье расшифровка доклада, который поможет вам выбрать библиотеку под свое приложение, и сделать так, чтобы она работало максимально эффективно.


О спикере: Александр Карпинский работает в компании Uploadcare и занимается сервисом быстрой модификации изображений на лету. Участвует в разработке Pillow — популярной библиотеки для работы с изображениями на Python, развивает собственный форк этой библиотеки — Pillow-SIMD, который использует современные инструкции процессоров для наибольшей производительности.

Бэкграунд


Сервис модификации изображений в Uploadcare — это сервер, к которому приходит HTTP-запрос с идентификатором изображения и какими-то операциями, которые нужно выполнить клиенту. Сервер должен выполнить операции и как можно быстрее отдать ответ. В качестве клиента чаще всего выступает браузер.

Весь сервис можно описать как обертку вокруг графической библиотеки. Именно от качества, производительности и удобства использования графической библиотеки зависит качество всего проекта. Несложно догадаться, что в качестве графической библиотеки в Uploadcare используется Pillow.

Библиотеки


Кратко рассмотрим, какие вообще есть в Python библиотеки для работы с графикой, чтобы лучше понимать, о чем пойдет речь далее.

Pillow


Pillow — форк PIL (Python Imaging Library). Это очень старый проект, вышедший в 1995 году для Python 1.2. Можно представить, насколько он старый! В какой-то момент Python Imaging Library была заброшена, ее разработка прекратилась. Форк Pillow был сделан для того, чтобы устанавливать и собирать Python Imaging Library на современных системах. Постепенно количество изменений, которые нужны были людям в Python Imaging Library росло, и вышла Pillow 2.0, в которую была добавлена поддержка Python 3. Это можно считать началом отдельной жизни проекта Pillow.

Pillow представляет из себя нативный модуль для Python, половина кода написана на С, половина — на Python. Версии Python поддерживаются самые разнообразные: 2.7, 3.3+, PуPу, PуPуЗ.

Pillow-SIMD


Это мой форк Pillow, который выходит с мая 2016 года. SIMD означает Single Instruction, Multiple Data — подход, при котором процессор может выполнять большее количество действий на такт, используя современные инструкции.

Pillow-SIMD — это не форк в классическом понимании, когда проект начинает жить собственной жизнью. Это замена Pillow, то есть вы устанавливаете одну библиотеку вместо другой, ни строчки не меняете в своем исходном коде, и получаете большую производительность.

Pillow-SIMD можно собирать с инструкциями SSE4 (по умолчанию). Это набор инструкций, который есть практически во всех современных x86 процессорах. Также Pillow-SIMD можно собирать с набором инструкций AVX2. Этот набор инструкций есть, начиная с архитектуры Haswell, то есть примерно с 2013 года.

OpenCV


Другая библиотека для работы с изображениями в Python, о которой вы наверняка слышали — это OpenCV (Open Computer Vision). Работает с 2000 года. Биндинг на Python входит в комплект. Это означает, что биндинг постоянно актуален, не бывает рассинхронности между самой библиотекой и биндингом.

К сожалению, эта библиотека пока не поддерживается в PyPy, потому что OpenCV базируется на numpy, а numpy только недавно стал работать под PyPy, и в OpenCV поддержки PyPy все еще нет.

VIPS


Еще одна библиотека, на которую стоит обратить внимание — VIPS. Основная идея VIPS в том, что для работы с изображением не нужно загружать всё изображение в память. Библиотека может загружать какие-то маленькие кусочки, обрабатывать их и сохранять. Таким образом, для обработки гигапиксельных изображений не нужно тратить гигабайты памяти.

Это довольно старая библиотека — 1993 года, но она обогнала своё время. О ней долгое время было мало, что слышно, но в последнее время для VIPS стали появляться биндинги под разные языки, в том числе для Go, Node.js, Ruby.

Я долгое время хотел попробовать эту библиотеку, пощупать, но мне это не удавалось по очень глупой причине. Я не мог разобраться, как установить VIPS, потому что биндинг собирался очень сложно. Но теперь (в 2017 году) вышел биндинг pyvips от автора самого VIPS, с которым уже нет никаких проблем. Теперь установка и использование VIPS очень простая. Поддерживаются: Python 2.7, 3.3+, PуPу, PуPуЗ.

ImageMagick & GraphicsMagick


Если говорить о работе с графикой, то нельзя не упомянуть старичков — библиотеки ImageMagick и GraphicsMagick. Последняя изначально была форком ImageMagick с большей производительностью, но сейчас производительность у них, кажется, сравнялась. Других принципиальных отличий, насколько я знаю, между ними нет. Поэтому можно использовать любую, точнее, ту, которую вам удобнее использовать.

Это самые старые библиотеки из тех, о которых я сегодня упомянул (1990 год). За все это время было несколько биндингов для Python, и почти все из них благополучно умерли к настоящему моменту. Из тех, что можно использовать, остались:

  • Биндинг Wand, который построен на ctypes, но уже тоже не обновляется.
  • Биндинг pgmagick использует Boost.Python, поэтому компилируется очень долго и не работает в PyPy. Но, тем не менее, использовать его можно, я бы сказал, что он предпочтительнее, чем Wand.

Производительность


Когда мы говорим о работе с изображениями, первое, что нам интересно (по крайней мере мне) — это производительность, потому что иначе мы бы могли и на Python написать что-нибудь руками.

Производительность — это не такая простая штука. Нельзя просто сказать, что одна библиотека работает быстрее другой. В каждой библиотеке есть набор функций, и каждая функция работает с разной скоростью.

Соответственно, корректно говорить только о том, что производительность одной функции выше или ниже в конкретной библиотеке. Либо у вас есть приложение, которому нужен некий набор функциональности, и вы делаете бенчмарк именно под эту функциональность, и говорите, что для вашего приложения такая-то библиотека работает быстрее (медленнее).

Важно проверять результат


Когда вы делаете бенчмарки, очень важно смотреть на результат, который получается. Даже если с первого взгляда вы написали один и тот же код, это не значит, что он одинаковый.

Недавно в статье, где сравнивалась производительность Pillow и OpenCV, мне попался такой код:

from PIL import Image, ImageFilter.BoxBlur
im.filter(ImageFilter.BoxBlur(3))
...

import cv2
cv2.blur(im, ksize=(3, 3))
...

Вроде бы и там, и там, BoxBlur, и там, и там аргумент 3, но на самом деле результат разный. Потому что в Pillow (3) — это радиус размытия, а в OpenCV ksize=(3, 3) — это размер ядра, то есть, грубо говоря, диаметр. В данном случае корректное значение для OpenCV было бы 3*2+1, то есть (7, 7).

В чем проблема?


Почему вообще производительность — это проблема при работе с графикой? Потому что сложность любой операций зависит от нескольких параметров, и чаще всего сложность растет линейно с каждым из них. А если этих факторов, например, три, и сложность линейно зависит от каждого, то получается сложность в кубе.

Пример: Гауссово размытие в OpenCV.



Слева — радиус 3, справа — 30. Как видно, разница в скорости более чем в 10 раз.

Когда передо мной встала задача добавить размытие по Гауссу в мое приложение, меня не устраивало, что гипотетически может тратиться 900 мс на выполнение одной операции. Таких операций в приложении тысячи в минуту, и тратить столько времени на одну — нецелесообразно. Поэтому я изучил вопрос и реализовал в Pillow размытие по Гауссу, которое работает за константное время относительно радиуса. То есть на производительность Гауссова размытия влияет только размер картинки.

Но здесь главное не то, что что-то работает быстрее или медленнее.

Я хочу донести, что, когда вы строите какую-то систему, важно понимать, от каких параметров зависит сложность на выходе. Тогда вы сможете ограничить эти параметры или другими способами бороться с этой сложностью.

Наверное, самая частая операция, которую мы делаем с изображениями после их открытия, — это изменение размера (resize).



На графике представлена производительность (больше — лучше) разных библиотек для операции уменьшения изображения в 8 и в 1,25 раз.

Для PIL результат 17 Mpx/s означает, что фотографию с айфона (12 Mpx) можно уменьшить в 1,25 раз чуть меньше, чем за секунду. Такой производительности недостаточно для серьезного приложения, которое этих операций выполняет очень много.

Я стал оптимизировать производительность ресайза, и в Pillow 2.7 мне удалось добиться двукратного прироста производительности, а в Pillow 4.3 — трехкратного (на данный момент актуальна версия Pillow 5.3, но производительность ресайза в ней та же).

Но операция ресайза — это такая штука, которая очень хорошо ложится на SIMD. Она подходит к single instruction, multiple data, и поэтому в текущей версии Pillow-SIMD мне удалось в 19 раз увеличить скорость ресайза по сравнению с оригинальной Python Imaging Library при использовании тех же самых ресурсов.

Это существенно выше производительности ресайза в OpenCV. Но сравнение это не совсем корректное, потому что в OpenCV используется чуть менее качественный способ ресайза бокс-фильтром, а в Pillow-SIMD ресайз реализован с помощью сверток.

Это неполный список тех операций, которые ускорены в Pillow-SIMD по сравнению с обычной Pillow.

  • Ресайз: от 4 до 7 раз.
  • Размытие: 2,8 раз.
  • Применение ядра 3?3 или 5?5: 11 раз.
  • Умножение и деление на альфа-канал: 4 и 10 раз.
  • Альфа-композиция: 5 раз.

Я уже сказал, что нельзя говорить, что какая-то библиотека работает быстрее, чем другая, но можно составить какой-то набор операций, который интересен именно вам. Я выбрал набор операций, которые интересны в моем приложении, сделал бенчмарк и получил такие результаты.



Оказалось, что Pillow-SIMD на этом наборе работает в 2 раза быстрее, чем Pillow. В самом конце находится Wand (напомню, что это ImageMagick).

Но меня заинтересовало другое — почему такие низкие результаты у OpenCV и VIPS, ведь это библиотеки, которые тоже разработаны с прицелом на производительность? Оказалось, что в случае OpenCV, та бинарная сборка OpenCV, которая ставится с помощью pip, собрана с медленным кодеком JPEG (автор сборки был уведомлен, на 2018 год эта проблема уже решена). Она собрана с libjpeg, в то время как в большинстве систем, по крайней мере debian-based, используется libjpeg-turbo, которая работает в несколько раз быстрее. Если собрать OpenCV из исходников самому, то производительность будет больше.

В случае VIPS ситуация другая. Я связался с автором VIPS, показал ему этот бенчмарк, мы с ним довольно долго и плодотворно переписывались. После чего автор VIPS нашел несколько мест в самом VIPS, где исполнение было не по оптимальному маршруту, и исправил их.

Вот что будет с производительностью, если собрать OpenCV из исходников текущей версии, а VIPS — из master, который уже есть сейчас.


Даже если вы нашли какой-то бенчмарк, еще не факт, что все будет работать именно с такой скоростью именно на вашей машине.

Набор бенчмарков


Все бенчмарки, о которых я рассказал, можно найти на странице с результатами. Это отдельный мини-проект, где я пишу бенчмарки, которые мне самому нужны для разработки Pillow-SIMD, запускаю их и выкладываю результаты.

На GitHub есть проект с фреймворками для тестирования, где каждый может предложить свои бенчмарки или поправить существующие.

Параллельная работа


До сих пор я говорил о производительности в чистом виде, то есть на одно ядро процессора. Но нам всем давно доступны системы с бо?льшим количеством ядер, и хотелось бы их утилизировать. Здесь я должен сказать, что на самом деле Pillow — это единственная из всех рассматриваемых библиотек, которая не использует распараллеливание задач. Я сейчас постараюсь объяснить, почему так происходит. Все остальные библиотеки в том или ином виде его используют.

Метрики производительности


С точки зрения производительности нам интересны 2 параметра:

  1. Реальное время выполнения одной операции. Есть операция (либо последовательность операций), и вам интересно, за какое реальное время (wall clock) выполнится эта последовательность. Этот параметр важен на десктопе, где есть пользователь, который отдал команду и ждет результат.
  2. Пропускная способность всей системы (потока операций). Когда у вас есть набор операций, который идет постоянно, либо много независимых операций, и вам важна скорость обработки этих операций на вашем железе. Эта метрика более важна на сервере, где клиентов много, и нужно обслужить их всех. Время обслуживания одного клиента, конечно, важно, но чуть меньше, чем общая пропускная способность.

Исходя из этих двух метрик рассмотрим разные способы параллельной работы.

Способы параллельной работы


? 1. На уровне приложения, когда вы на уровне приложения решаете, что операции обрабатываются в разных потоках. При этом реальное время выполнения одной операции не меняется, потому что по-прежнему одно ядро занимается одной последовательностью операций. Пропускная способность системы растет пропорционально количеству ядер, то есть очень хорошо.

? 2. На уровне графических операций — то, что как раз есть в большинстве графических библиотек. Когда графическая библиотека получает какую-то операцию, она внутри себя создает необходимое количество потоков, разбивает одну операцию на несколько более мелких, и выполняет их. При этом реальное время выполнения уменьшается — одна операция выполняется быстрее. Но пропускная способность растет далеко не линейно от количества ядер. Есть операции, которые не параллелятся, и яркий пример — это декодирование PNG-файлов — его никак нельзя распараллелить. Кроме того, есть накладные расходы на создание потоков, разбиение задач, которые тоже не дают пропускной способности расти линейно.

? 3. На уровне команд процессора и данных. Мы специальным образом подготавливаем данные и используем специальные команды, для того чтобы процессор работал с ними быстрее. Это подход SIMD, который, собственно, и используется в Pillow-SIMD. Реальное время выполнения уменьшается, пропускная способность растет — это беспроигрышный вариант.

Как совместить параллельную работу


Если мы хотим совместить как-то параллельную работу, то SIMD хорошо совмещается с распараллеливанием внутри операции, и SIMD хорошо совмещается с распараллеливанием внутри приложения.

Но распараллеливание внутри приложения и внутри операции друг с другом не совмещаются. Если вы попробуете это сделать, то получите минусы от обоих подходов. Реальное время выполнения операции будет таким же, каким оно и было на одном ядре, а пропускная способность системы вырастет, но не линейно относительно количества ядер.

Многопоточность


Если уж мы заговорили про потоки — мы все пишем на Python и знаем, что в нем есть GIL, который не дает выполняться двум потокам одновременно. Python — это строго однопоточный язык.

Конечно, это не правда, потому что GIL на самом деле не дает выполняться двум потокам на Python, а если код написан на другом языке, и во время своей работы не использует внутренние структуры Python, то этот код может отпускать GIL и таким образом освобождать интерпретатор под другие задачи.

Многие библиотеки для работы с графикой освобождают GIL во время своей работы, в том числе Pillow, OpenCV, pyvips, Wand. Не освобождает только одна — pgmagick. То есть вы можете спокойно создавать потоки под выполнение каких-то операций, и это будет работать параллельно с остальным кодом.

Но возникает вопрос: сколько создавать потоков?

Если мы будем создавать бесконечное количество потоков под каждую задачу, которая у нас есть, то они просто займут всю память и весь процессор, — мы не получим никакой эффективной работы. Я сформулировал специальное правило.

Правило N + 1

Для продуктивной работы нужно создавать не более N + 1 воркеров, где N — количество ядер или потоков процессора на машине, а воркер — это процесс или поток, занятый обработкой.

Лучше всего использовать именно процессы, потому что даже в рамках одного интерпретатора есть узкие места и накладные расходы.

Например, у нас в приложении используется N + 1 instance Tornado, балансировку между которыми осуществляет ngnix. Если упомянуто Tornado, то давайте поговорим об асинхронной работе.

Асинхронная работа


То время, которое графическая библиотека занимается собственно полезной работой — обработкой изображений — можно и нужно использовать для ввода/вывода, если они есть у вас в приложении. Асинхронные фреймворки здесь очень в тему.

Но есть проблема — когда мы вызываем какую-то обработку, она вызывается синхронно. Даже если библиотека отпускает в этот момент GIL, все равно Event Loop блокируется.

@gen.coroutine
def get(self, *args, **kwargs):
    im = process_image(...)
    ...

К счастью, эту проблему очень легко решить созданием ThreadPoolExecutor с одним тредом, на котором запускается обработка изображения. Этот вызов уже происходит асинхронно.

@run_on_executor(executor=ThreadPoolExecutor(1))
def process_image(self,
    ...
@gen.coroutine
def get(self, *args, **kwargs):
    im = yield process_image(...)
    ...

По сути здесь создается очередь с одним воркером, который выполняет именно графические операции, а Event Loop не блокируется и спокойно работает параллельно в другом потоке.

Ввод/Вывод


Еще одна тема, которую я бы хотел затронуть в рамках разговора о графических операциях — это ввод/вывод. Дело в том, что мы редко создаем какие-то изображения с помощью графической библиотеки. Чаще всего мы открываем изображения, которые пришли к нам от пользователей в виде закодированных файлов (JPEG, PNG, BMP, TIFF и пр.).

Соответственно, графическая библиотека для построения хорошего приложения должна обладать некоторыми плюшками по вводу/выводу именно из файлов.

Ленивая загрузка


Первая такая плюшка — это ленивая загрузка. Если, например, в Pillow вы открываете изображение, то в этот момент не происходит декодирования картинки. Вам возвращается объект, который выглядит, как будто изображение уже загружено и работает. Вы можете посмотреть его свойства и решить на основании свойств этого изображения, готовы ли вы с ним работать дальше, не загрузил ли вам пользователь, например, гигапиксельную картинку для того, чтобы сломать ваш сервис.

>>> from PIL import Image
>>> %time im = Image.open()
Wall time: 1.2 ms
>>> im.mode, im.size
('RGB', (2152, 1345))

Если вы принимаете решение, что дальше работаете, то с помощью явного или неявного вызова load происходит декодирование этого изображения. Уже в этот момент выделяется нужное количество памяти.

>>> from PIL import Image
>>> %time im = Image.open()
Wall time: 1.2 ms
>>> im.mode, im.size
('RGB', (2152, 1345))
>>> %time im.load()
Wall time: 73.6 ms

Режим битых картинок


Вторая плюшка, которая нужна при работе с пользовательским контентом — это режим битых картинок. Файлы, которые мы получаем от пользователей, очень часто содержат какие-то несоответствия с форматом, в котором они закодированы.

Эти несоответствия бывают по разным причинам. Иногда это ошибки передачи по сети, иногда — просто какие-то кривые кодеки, которыми кодировалось изображение. По умолчанию Pillow, когда видит изображения, которые не соответствуют формату до конца, просто кидает исключение.

from PIL import Image
Image.open('trucated.jpg').save('trucated.out.jpg') 
IOError: image file is truncated (143 bytes not processed)

Но пользователь же не виноват в том, что у него картинка битая, он все равно хочет получить результат. К счастью, у Pillow есть режим битых картинок. Мы меняем одну настройку, и Pillow старается по максимуму игнорировать все ошибки декодирования, которые есть в изображении. Соответственно, пользователь видит хотя бы что-то.

from PIL import Image, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
Image.open('trucated.jpg').save('trucated.out.jpg')



Даже обрезанная картинка — это все равно лучше, чем ничего — просто страница с ошибкой.

Сводная таблица




В таблице выше я собрал все, что касается ввода/вывода в тех библиотеках, о которых я рассказываю. В частности, я посчитал количество кодеков различных форматов, которые есть в библиотеках. Получилось, что в OpenCV их меньше всех, в ImageMagick — больше всех. Похоже, что в ImageMagick можно открыть вообще любое изображение, которое вам встретится. У VIPS 12 собственных кодеков, но VIPS может использовать ImageMagick в качестве промежуточного звена. Я не проверял, как это работает, надеюсь, что бесшовно.

В Pillow 17 кодеков. Это сейчас единственная библиотека, в которой нет автоповорота EXIF. Но сейчас это небольшая проблема, потому что можно прочитать EXIF самому и повернуть изображение в соответствии с ним. Это вопрос небольшого сниппета, который легко гуглится и занимает максимум в 20 строчек.

Особенности OpenCV


Если посмотреть на эту таблицу внимательно, то видно, что в OpenCV на самом деле не все так хорошо с вводом/выводом. В нем меньше всего кодеков, нет ленивой загрузки и нельзя прочитать EXIF и цветовой профиль.

Но это не все. На самом деле у OpenCV есть еще особенности. Когда мы просто открываем какую-то картинку, то вызов cv2.imread(filename) поворачивает JPEG-файлы в соответствии с EXIF (см. таблицу), но при этом игнорирует альфа-канал у PNG-файлов — довольно странное поведение!

К счастью, в OpenCV есть флаг: cv2.imread(filename, flags=cv2.IMREAD_UNCHANGED).

Если указать флаг IMREAD_UNCHANGED, то OpenCV оставляет альфа-канал у PNG-файлов, но перестает поворачивать JPEG-файлы в соответствии с EXIF. То есть один и тот же флаг влияет на два совершенно разных свойства. Как видно из таблицы, у OpenCV нет возможности прочитать EXIF, и получается, что в случае с этим флагом невозможно повернуть JPEG вообще.

Что делать, если вы заранее не знаете, какого формата у вас изображение, и вам нужны и альфа-канал у PNG, и автоповорот у JPEG? Ничего не сделать — OpenCV так не работает.

Причина, почему в OpenCV такие проблемы, кроется в названии этой библиотеки. В ней очень много функциональности для компьютерного зрения и анализа изображений. По сути, OpenCV рассчитана на работу с верифицированными источниками. Это, например, камера наружного наблюдения, которая раз в секунду скидывает изображения, и делает это в течение 5 лет в одном и том же формате и одном и том же разрешении. Здесь не нужна вариативность в вопросе ввода/вывода.

Людям, которым нужна функциональность OpenCV, не сильно нужна функциональность работы с пользовательским контентом.

Но что делать, если в вашем приложении все-таки нужна функциональность работы с пользовательским контентом, и в то же время нужна вся мощь OpenCV по обработке и статистике?



Решение в том, что нужно совмещать библиотеки. Дело в том, что OpenCV построен на базе numpy, и в Pillow есть все средства для того, чтобы экспортировать изображения из Pillow в массив numpy. То есть мы экспортируем массив numpy, и OpenCV может дальше работать с этим изображением, как со своим собственным. Это делается очень легко:

import numpy
from PIL import Image
...
pillow_image = Image.open(filename)
cv_image = numpy.array(pillow_image)

Дальше, когда мы делаем магию с помощью OpenCV (обработку), мы вызываем еще один метод Pillow и обратно импортируем из OpenCV картинку в формат Pillow. Соответственно, можно снова пользоваться вводом/выводом.

import numpy
from PIL import Image
...
pillow_image = Image.fromarray(cv_image, "RGB")
pillow_image.save(filename)

Таким образом получается, что мы пользуемся вводом/выводом от Pillow, и процессингом от OpenCV, то есть берем лучшее из двух миров.

Надеюсь, это поможет вам построить нагруженное приложение для работы с графикой.

Узнать некоторые другие секреты разработки на Python, перенять бесценный и местами неожиданный опыт, а главное обсудить свои задачи можно будет уже совсем скоро на Moscow Python Conf++. Например, обратите внимание на такие имена и темы в расписании.

  • Donald Whyte с историей о том, как с помощью популярных библиотек, хитрости и коварства делать математику в 10 раз быстрее, а код — понятным и поддерживаемым.
  • Андрей Попов про сбор огромного количества данных и их анализ на наличие угроз.
  • Ефрем Матосян в своем докладе «Make Python fast again» расскажет, как увеличить производительность демона, обрабатывающего сообщения из шины.

Полной список того, что предстоит обсудить за 22 и 23 октября тут, успевайте присоединиться.

Комментарии (9)


  1. JaroslavB
    18.10.2018 17:15
    +1

    Интерестно сравнение с OpenCV CUDA.
    По моим наблюдениям, именение размера изображений, OpenCV CUDA (cv::cuda::resize) работает в раза три быстрей чем OpenCV CPU (cv::resize). Тестировал в C++ проэкте.


    1. homm
      18.10.2018 17:22

      Из документации:


      cuda::resize(InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation=INTER_LINEAR, Stream& stream=Stream::Null())

      interpolation – Interpolation method. INTER_NEAREST, INTER_LINEAR and INTER_CUBIC are supported for now.

      Если INTER_CUBIC интерпретируется так же, как в самом cv::resize (то есть при уменьшении берется фиксированное ядро в окружности ближайшей точки), то такой ресайз (а точнее такое качество) никому не нужно. А более-менее приемлемого значения INTER_AREA тут нет.


      Понять, в чем проблема в ресайзе с фиксированным ядром, можно, например, прочитав соответствующую главу в моей недавней статье.


  1. karavan_750
    18.10.2018 19:06

    eyeofhell пользователей графических библиотек беспокоит не только производительность, но и безопасность.
    Во избежание подобного: «Удалённое выполнение кода».
    Уделяли ли вы внимание вопросу безопасности при разработке, когда источник изображения не является доверенным?


    1. eyeofhell Автор
      18.10.2018 19:07

      1. karavan_750
        18.10.2018 19:12

        Да. Спасибо за приглашение автора кода. Я потерялся, пока читал статью.


    1. homm
      18.10.2018 23:28
      +1

      У меня нет какой-то большой истории про безопасность, которую бы я мог рассказать. Да, уделяли, как иначе. Численно оценить это сложно. Таких глобальных уязвимостей, с исполнением кода, насколько я знаю, не было. Но понятно, что чем распространеннее библиотека, тем больше в ней ищут уязвимости. Pillow намного менее распространенна, чем тот же ImageMagick, так что есть два варианта, либо еще не нашли, либо их нет.


  1. AngReload
    19.10.2018 06:17

    размытие по Гауссу, которое работает за константное время относительно радиуса

    Это значит с увеличением радиуса время останется тем же? Как оно работает?


    1. homm
      19.10.2018 09:45

      Совершенно верно. Работает через апроксимацию серией бокс-фильтров. Народ и раньше догадывался, что несколько бокс-фильтров выдают результат, похожий на размытие по Гауссу. Но всё встало на места после работы немецких исследователей.


      1. AngReload
        19.10.2018 10:56
        +1

        Ага, такой способ мне известен. Даже не знаю чего ожидал, наверное чего-нибудь типа такого — https://habr.com/post/151157/