В данной статье приводится краткое авторское объяснение одной из самых значимых нерешенных проблем в алгебраической геометрии, в частности комплексной алгебраической геометрии, и алгебраической топологии, и по совместительству одной из задач тысячелетия, — гипотезе Ходжа.
Данная гипотеза утверждает, что каждый класс Ходжа регулярного проективного многообразия над
 является рациональной линейной комбинацией классов когомологий алгебраических циклов.
Пусть
 одно из следующих полей: поле комплексных чисел, конечное поле, числовое поле; два последних поля мы беспрепятственно можем объединить в более широкий класс, рассматривая конечно порожденное поле над своим простым подполем.
В каждом из случаев мы так или иначе рассматриваем категорию гладких проективных многообразий над
 с соответствующими морфизмами, и также в каждом из случаем мы имеем естественную абелеву категорию (на самом деле, рассматриваются моноидальные категории, наделенные некоторой дополнительной структурой относительно 
): для комплексного случая — категория чистой структуры Ходжа, в остальных случаях — категории 
-адических представлений абсолютной группы Галуа 
.
Рассматриваемая когомология дает нам функтор из категорий гладких проективных многообразий в последние вышеназванные категории. В комплексном случае это возможно ввиду теории Ходжа, в конечном и числовом случае — ввиду теории этальных когомологий (theory of etale cohomology). Гипотеза Ходжа (в комплексном случае) и гипотеза Тейта (в других случаях), дают нам полное право утверждать, что этот функтор является вполне унивалентным.
Вследствие верности данной гипотезы, мы можем строить соответствия между многообразиями, просто сделав необходимые расчеты в некоторых более линейных категориях.
Далее я хотел бы продемонстрировать непосредственное применение гипотезы Ходжа в разных областях математики. Например, в алгебраической теории чисел:
Пусть
 и 
 — два простых числа. Пусть задан максимальный порядок 
 в алгебре кватернионов 
 над 
, разветвленной в 
 и 
 и расщепленной всюду (в том числе и на бесконечности). Пусть также 
 обозначает мультипликативную группу нормы одного элемента в 
.
Ввиду того, что
)
%2C)
мы можем рассматривать
 как дискретную подгруппу 
 и построить факторгруппу
)

где
 — верхняя полуплоскость.
Мы также можем рассмотреть обычную конгруэнтную подгруппу
, состоящую из верхнетреугольных матриц 
, и построить 
 — компактификацию 
.
Теория модулярных и автоморфных форм и связанные с ними представления Галуа показывает, что
 и 
 по своей природе являются кривыми над 
, и что имеется вложение представлений Галуа
)
%20%5Cto%20H%5E1(%5Cmathcal%7BX%7D_0(pq)).)
Таким образом, при верности гипотезы Тейта, справедливо было бы утверждать, что существует соответствие между
 и 
, включая соответствующие вложения. Переходя к структуре Ходжа, нам бы не составило труда выяснить, что 1-периодическая голоморфная форма на 
 должна быть также в числе 1-периодических голоморфных форм на 
.
В свою очередь, теория
-функций показывает, что 1-периодические голоморфные формы на 
 в некоторых случаях позволяют вычислить особые значения 
-функций, связанных с модулярными формами на 
. Теперь, учитывая все вместе (с гипотезой Тейта), мы могли бы вычислить особые значения 
-функций в некоторых модулярных формах, найдя периоды интегралов вдоль кривой 
. В определенном отношении 
 ведет себя лучше, чем 
, и потому это очень важный метод в исследовании арифметики 
-функций.
Теперь ясно видно, что в данном случае гипотеза Тейта на самом деле является теоремой Фалтинга, и пример выше является корректным и полным.
Однако существует бесконечно много других аналогичных ситуаций в теории многообразий Шимуры, где гипотеза Тейта еще неизвестна.
Можно привести еще один небольшой пример непосредственно из комплексной геометрии:
Пусть
 является поверхностью типа 
. Тогда, исходя из структуры Ходжа в пространстве 
, можно построить абелево многообразие, связанное с 
 (многообразие Куга-Сатаке). Ясно, что конструкция выполнена в условиях структуры Ходжа. Можно сказать, пожалуй, что тут должна иметь место определенная связь, я бы даже сказал, соответствие, между поверхностью 
 и связанным с ней абелевым многообразием, однако едва ли об этом можно говорить в целом. Как раз верность гипотезы Ходжа и будет обосновывать существование предполагаемой связи в виде соответствия.
Как видно, это достаточно трудная для доказательства проблема, однако математики не дремлют: существует множество частных случаев с вышеразобранными линиями; даже позволю себе сказать большее: на данный момент есть приличное количество изобретательных методов, позволяющих обходить стороной, игнорировать гипотезы Ходжа и Тейта. Но тем не менее последние имеют твердую почву под ногами в качестве фундаментальных руководящих принципов, объясняющих нам, почему все именно так, и никак иначе.
Общий вывод: алгебраические циклы – это весьма широкие по применению и богатые по информации объекты, которые способны «оседлать» два мира сразу: мир периодов интегралов и мир представлений Галуа. Таким образом, если гипотезы Ходжа и Тейта верны, то мы можем не сомневаться, что существуют непосредственные и глубокие связи между этими двумя мирами: мы можем передать информацию от одного к другому посредством алгебраических циклов.
              
            Данная гипотеза утверждает, что каждый класс Ходжа регулярного проективного многообразия над
Пусть
В каждом из случаев мы так или иначе рассматриваем категорию гладких проективных многообразий над
Рассматриваемая когомология дает нам функтор из категорий гладких проективных многообразий в последние вышеназванные категории. В комплексном случае это возможно ввиду теории Ходжа, в конечном и числовом случае — ввиду теории этальных когомологий (theory of etale cohomology). Гипотеза Ходжа (в комплексном случае) и гипотеза Тейта (в других случаях), дают нам полное право утверждать, что этот функтор является вполне унивалентным.
Вследствие верности данной гипотезы, мы можем строить соответствия между многообразиями, просто сделав необходимые расчеты в некоторых более линейных категориях.
Далее я хотел бы продемонстрировать непосредственное применение гипотезы Ходжа в разных областях математики. Например, в алгебраической теории чисел:
Пусть
Ввиду того, что
мы можем рассматривать
где
Мы также можем рассмотреть обычную конгруэнтную подгруппу
Теория модулярных и автоморфных форм и связанные с ними представления Галуа показывает, что
Таким образом, при верности гипотезы Тейта, справедливо было бы утверждать, что существует соответствие между
В свою очередь, теория
Теперь ясно видно, что в данном случае гипотеза Тейта на самом деле является теоремой Фалтинга, и пример выше является корректным и полным.
Однако существует бесконечно много других аналогичных ситуаций в теории многообразий Шимуры, где гипотеза Тейта еще неизвестна.
Можно привести еще один небольшой пример непосредственно из комплексной геометрии:
Пусть
Как видно, это достаточно трудная для доказательства проблема, однако математики не дремлют: существует множество частных случаев с вышеразобранными линиями; даже позволю себе сказать большее: на данный момент есть приличное количество изобретательных методов, позволяющих обходить стороной, игнорировать гипотезы Ходжа и Тейта. Но тем не менее последние имеют твердую почву под ногами в качестве фундаментальных руководящих принципов, объясняющих нам, почему все именно так, и никак иначе.
Общий вывод: алгебраические циклы – это весьма широкие по применению и богатые по информации объекты, которые способны «оседлать» два мира сразу: мир периодов интегралов и мир представлений Галуа. Таким образом, если гипотезы Ходжа и Тейта верны, то мы можем не сомневаться, что существуют непосредственные и глубокие связи между этими двумя мирами: мы можем передать информацию от одного к другому посредством алгебраических циклов.
Комментарии (3)

Arastas
18.01.2016 16:35+2Лично мне очень импонирует, как автор льстит читателям. Например,
ясно видно, что в данном случае гипотеза Тейта на самом деле является теоремой Фалтинга
или
нам бы не составило труда выяснить, что 1-периодическая голоморфная форма на \mathcal{X} должна быть также в числе 1-периодических голоморфных форм на \mathcal{X}_0(pq)
          
 
PavelSandovin
На мой взгляд, поскольку на Хабре много прикладников, а не математиков-теоретиков, было бы полезно хотя бы кратко объяснить что такое
— Класс Ходжа
— регулярное многообразие
— проективное многообразие
— когомология
— алгебраический цикл
Wiechlinghamme
Приведенный тест предполагает, что специальный глоссарий уже освоен читателем. Разъяснять здесь столь обыденные для данных дисциплин термины просто-напросто нецелесообразно. К сожалению, на общий контингент присутствующих здесь лиц я обратил в последнюю очередь; признаю, ошибка за мной.