Руководитель НАСА объявил о начале новой эры в авиации
Впервые за десять лет авиаконструкторы НАСА начали разработку нового самолёта с маркировкой X (eXperimental). 57-й моделью в серии X станет самолёт на аккумуляторах и с электрическими двигателями — модель X-57 под кодовым названием Maxwell.
Серия X
Серия экспериментальных самолётов X началась с X-1, разработанного Bell Aircraft в 1946 году — первого самолёта с ракетным двигателем (производства Reaction Motors) и первого самолёта в истории авиации, преодолевшего звуковой барьер. Это произошло 14 октября 1947 года.
Bell X-1 — первый самолёт, преодолевший звуковой барьер. Фото: НАСА
Bell Х-1 представлял собой свободнонесущий цельнометаллический моноплан, с необычным прямым крылом с обрезанными концами и относительной толщиной 8%. Для уменьшения вибраций по время преодоления звукового барьера и при сверхзвуковых скоростях к самолёту спроектировали специальные демпферы (амортизаторы) для смягчения колебаний.
Двигатель Reaction Motors XRL-11 для самолёта X-1. Фото: USAF. Фото: НАСА
На моделях серии X традиционно испытывают перспективные технологии. Некоторые из них разрабатывались специально для армии США и долгое время были засекреченными. Например, о том, что X-1 впервые в истории достиг сверхзвуковой скорости, сообщили только восемь месяцев спустя.
За прошедшие полвека в серии Х разработаны десятки разнообразных экспериментальных моделей самолётов всех форм, размеров и предназначений, а также несколько ракет. Другим знаменитым представителем этой легендарной серии стал ракетоплан X-15 — первый и в течение 40 лет единственный в истории пилотируемый гиперзвуковой летательный аппарат-самолёт, совершавший суборбитальные пилотируемые космические полёты.
X-15
Установленный X-15 рекорд высоты 107,96 км продержался с 1963 по 2004 годы.
Схема X-15
Последней модель в экспериментальной серии самолётов НАСА стал X-56 — модульный беспилотный летательный аппарат, который должен был испытать возможности долгосрочной разведки на больших высотах (High-Altitude Long Endurance, HALE). Первый испытательный полёт X-56 совершил 26 июля 2013 года.
X-56
За последние годы американские авиаинженеры взяли небольшую паузу: со времён X-56 в экспериментальной серии X не появилось ни одной модели, а исключительно силами НАСА не проектировалось ни одного нового самолёта серии X уже десять лет.
Переделанный итальянец
Наконец-то 17 июня 2016 года это своеобразное инженерное «эмбарго» нарушил администратор НАСА Чарльз Болден (Charles Bolden), который выступил в пятницу на ежегодном форуме Американского института аэронавтики и астронавтики в Вашингтоне. Он официально анонсировал новую модель серии X: ею станет электрический самолёт X-57 под кодовым названием Maxwell.
X-57
Самолёт X-57 отличается крыльями необычной конструкции и приводится в движение 14 пропеллерными электродвигателями. Разработка этой модели идёт в рамках проекта SCEPTOR (Scalable Convergent Electric Propulsion Technology Operations Research) по программе разработки электрических двигателей в Лётно-исследовательском центре им. Армстронга.
Инженеры НАСА собираются выпустить прототип X-57 путём модификации недавно закупленного лёгкого двухмоторного итальянского самолёта Tecnam P2006T.
Tecnam P2006T
Этот экономичный четырёхместный самолёт потребляет всего 34 литра топлива в час, развивая максимальную скорость 287 км/ч.
Схема Tecnam P2006T
Вместо двух поршневых двигателей Tecnam P2006T в американской экспериментальной модели X-57 установят 14 пропеллерных двигателей на электрической тяге. Из них 12 винтов на передней кромке крыла включаются только при разгоне, отрыве и посадке, а два больших винта по краям крыльев предназначены для движения на крейсерской скорости.
Новая эра в авиации
Как и в случае с седельным электротягачом Nikola Motor, главной причиной отказа от дизельного топлива в пользу электрической силовой установки называют снижение эксплуатационных расходов. Проще говоря, электродвигатели намного дешевле в эксплуатации и эффективнее.
Разработчики из НАСА считают, что распределение электроэнергии между встроенными в крылья пропеллерными двигателями приведёт к пятикратному снижению энергии во время полёта частного самолета на крейсерской скорости 280 км/ч. В результате, общие эксплуатационные расходы для небольших воздушных судов сократятся на 40% при сохранении высоких скоростей полета. Если раньше для экономии топлива самолётам приходилось летать на меньших скоростях, то электрические двигатели устраняют такое ограничение, сказано в пресс-релизе НАСА.
Кроме того, электросамолёт на аккумуляторах сократит выбросы вредных веществ в атмосферу, по сравнению с обычными двигателями. В частности, переход на такие самолёты позволит существенно уменьшить потребление авиационного топлива, содержащего присадки на основе свинца, которое до сих пор широко используется в гражданской авиации.
«С возвращением пилотируемых самолетов X-серии в сферу исследовательских возможностей НАСА — что является ключевой частью нашей 10-летней инициативы по достижению новых горизонтов в авиации — разработка самолета X-57 станет первым шагом к началу новый эры в авиации», — заявил глава НАСА Чарльз Болден».
Похоже, как и будущее наземного транспорта — за электрическими беспилотными легковыми автомобилями и грузовыми фурами, так и будущее авиации принадлежит электрическим самолётам. По крайней мере, так считает НАСА.
Новому самолёту X-57 присвоено название Maxwell в честь шотландского физика 19 века Джеймса Клерка Максвелла, который опубликовал революционные научные работы по электромагнетизму и вместе с Лоренцем заложил основы классической электродинамики (уравнения Максвелла – Лоренца).
Комментарии (63)
WebSun
20.06.2016 15:34Вопрос только в том какое расстояние он сможет пролететь на одной зарядке. И сколько его потом заряжать.
pnetmon
20.06.2016 15:35+1Казалось что первым Х в этом году был суперсоник
http://www.nasa.gov/press-release/nasa-begins-work-to-build-a-quieter-supersonic-passenger-jet
The return of supersonic passenger air travel is one step closer to reality with NASA's award of a contract for the preliminary design of a “low boom” flight demonstration aircraft. This is the first in a series of ‘X-planes’ in NASA's New Aviation Horizons initiative, introduced in the agency’s Fiscal Year 2017 budget....NASA selected a team led by Lockheed Martin Aeronautics Company of Palmdale, California, to complete a preliminary design for Quiet Supersonic Technology (QueSST).
Но НАСА считает этот проект (X-57) первым X-ом http://www.nasa.gov/press-release/nasa-electric-research-plane-gets-x-number-new-name
Andriy1218
20.06.2016 16:12+4«Руководитель НАСА объявил о начале новой эры в авиации»
Что-то я, ни как, не могу связать появление очередного электрического самолёта с неизвестными характеристиками(кроме крейсерской скорости) и началом новой эры в авиации.vasimv
20.06.2016 17:24Если действительно доведут автономность этого электрического самолета до ДВС, то довольно сильная вещь для легкой авиации получится. Простота в ремонте и обслуживании, дешевизна полетов. Вполне тянет на локальную революцию.
Andriy1218
20.06.2016 18:17Я не нашел никаких упоминаний про возможное время полета для данной модели. Зато крейсерская скорость в 4 раза больше чем в Solar Impilse.Так-что, будем надеется, что NASA не сидела, сложа руки.
setevoy4
20.06.2016 18:36Уже вижу какой-нибудь «B-11E E-Lancer» с боевой нагрузкой тонн эдак в 50.
k155la3
20.06.2016 19:39+1Да. Продаётся под лозунгом «забомби соседний двор».
У электроаккумуляторов 400Вт*ч/кг. У бензина — 10кВт*ч/кг. И перспектив к радикальному улучшению (хотя б до 1-2кВт*ч/кг) — никаких.
У электромоторов сейчас — порядка 1-2кВт/кг, у турбины — 10кВт/кг (правда тут — ладно — можно оговорить насчёт ВТСП).
И сказывается всё это на дальности полёта очень сильно, ибо формула Циолковского встаёт в полный рост (экспоненту можно игнорировать только пока удельный импульс заваливает за 20-50 тысяч, как у нынешних самолётов, а вот как только он падает до тысяч… привет, я тут, твой полярный лисёнок).Rascko
20.06.2016 20:48в бумагах фирмы «Конвэр» был вариант, который может предложить неплохое решение по продлению времени полета: сарказм:
https://habrastorage.org/getpro/geektimes/comment_images/d25/406/313/d254063134052c933e0dfade42f473d8.jpg
x86d0cent
20.06.2016 22:58И перспектив к радикальному улучшению (хотя б до 1-2кВт*ч/кг) — никаких.
Ну почему же — для Li-S удельная емкость 2.6 кВт*ч/кг. По 700 с лишним Вт*ч/кг уже сейчас получают, но есть сложности с количеством циклов. Так что до 1-2кВт*ч/кг перспективы как раз есть.k155la3
21.06.2016 12:34Не знаю… Там нужно оставить место для проводников (удельная мощность тоже же играет), и чтоб они не так быстро подыхали. И все эти пары родом из 80-90-х.
Поэтому поверю, когда увижу в продаже, и не ранее.x86d0cent
21.06.2016 14:25Эм… Ну как бы когда вы это увидите «в продаже» — это уже будут не «перспективы».
k155la3
21.06.2016 21:42Угу. Ну вот я ж и не верю, что оно когда-то будет в продаже. :) То есть, не считаю это сколь-нить реальными перспективами.
x86d0cent
22.06.2016 00:14Ну так при подходе «пока в продаже нет — нет перспективы» выходит, что перспективы как бы вообще никакой никогда и нет :)
Что же касается конкретно Li-S — лабораторные образцы есть, а Сони, например, планирует вывести на рынок к 2020-му году. И раз планирует — очевидно, они видят перспективы в этой технологии. Впрочем, каждый имеет право на собственное мнение.
vc9ufi
21.06.2016 11:20Я думаю им не важна емкость для экспериментов а когда понадобятся прикрутят турбину.
CyberAndrew
20.06.2016 19:50Время полета летательного аппарата почти целиком упирается в аккумуляторы. А пока ничего емче литий-ионных/полимерных аккумуляторов не придумали, непонятно, как здесь может получиться большое время полета. Игрушечные вертолеты, например, летают максимум 10 минут.
vasimv
20.06.2016 20:24Как я понял, они собираются оптимизировать движки+винты под конкретные режимы работы. То есть полетным двигателям не нужно будет давать большую статическую тягу в ущерб скорости воздушного потока. А взлетным — наоборот, от них только тяга и требуется. За счет этого и хотят выиграть в эффективности.
SGordon123
20.06.2016 21:50А почему приравниваете игрушечный вертолет к самолету? Игрушечный самолет легко летает пару часов…
Зачем именно столько винтов — не понятно, есть толковое обоснование где то?k155la3
20.06.2016 21:59Выше писал: это увеличивает ещё пропульсивный КПД движителя (отношение тяга/мощность).
Ну и шума меньше.
k155la3
20.06.2016 19:34Объявить-то никогда не помешает.
Вообще, первый «человеческий» электролёт был, вроде, у швейцарцев лет шесть назад.
Festour
20.06.2016 21:10+1Это же Ализар, он вполне мог приукрасить, а то и приврать ради более сильной реакции читателей.
Yakimchuk
20.06.2016 19:34+1Подскажите, пожалуйста, а в чем собственно новаторство? Ведь есть не только электрический, но даже самолёт с солнечными батареями — SI2.
vasimv
20.06.2016 20:34Раздельные двигатели для взлета и собственно полета, какой-то новаторский профиль крыла обещают. Ну и хотят сделать модель, типа для реальной жизни (для легкой авиации), причем с прицелом на масштабирование для разных целей.
Persona_ks
20.06.2016 20:31«12 винтов на передней кромке крыла включаются только при разгоне, отрыве и посадке, а два больших винта по краям крыльев предназначены для движения на крейсерской скорости».
Насколько сильно будут ухудшать аэродинамику неработающие 12 винтов при крейсерском полете?teecat
21.06.2016 12:56Они скорее всего будут флюгироваться. А вот два около законцовок, если будут вращаться правильно — вполне могут препятствовать перетеканию через закронцовки, что приведет у уменьшению аэродинамических потерь
Siper
20.06.2016 20:49+1" Если раньше для экономии топлива самолётам приходилось летать на меньших скоростях, то электрические двигатели устраняют такое ограничение"
С чего бы это вдруг?vasimv
20.06.2016 23:35Неоптимальный режим работы двигателя+винта, которым приходится и взлет и полет обеспечивать. Находят какой-то разумный компромисс, далекий от максимальной скорости. В данном случае — тягу на взлете будут давать отдельные движки, а полетные — тянуть, как нужно для скорости.
Fuzzyjammer
21.06.2016 12:42Эта проблема решается регулируемым шагом винта, кроме как на самых-самых дешевых ультралайтах, где винт фиксированный. Круиз (оптимальный режим) не так уж далек от максимальной скорости, разница между ними (на поршневых одномоторных) порядка 10 км/ч.
Так что вопрос остается открытым.vasimv
21.06.2016 13:46Регулируемый шаг винта — опять же, не самый оптимальный. Число лопастей, для начала, он не поменяет никак. Профиль фиксированного винта под конкретные обороты можно близкий к идеальному получить, с регулируемым шагом так не получится, не говоря уже о сложности самого механизма.
lonelymyp
20.06.2016 21:35интересно, а он во время снижения и торможения будет восстанавливать запас энергии за счёт рекуперации? =)
vasimv
20.06.2016 23:20Разве что в мощный восходящий поток попадет, иначе смысла особого нет. Резко тормозить как автомобилю — самолету противопоказано, а для плавного торможения достаточно мощность на полетных движках уменьшить. Ну и еще подозреваю, что взлетные двигатели будут оборудованы складывающимися пропеллерами, чтобы не создавать большого сопротивления в полете.
oboyshikov
21.06.2016 10:50Складывать их не нужно, просто развернуть кромкой по направлению полёта, то есть зафлюгировать. Давно используется как раз для снижения сопротивления.
Да же был случай, когда самолёт остался без двигателей и не дотянул до полосы на планировании. Расследование показало, что если бы пилот зафлюгировал винты, то они бы дотянули.
arkodiy
21.06.2016 12:57На снижении вполне можно, на самолётах с хорошим качеством реально бывает проблема потерять высоту, лишнее сопротивление не помешает.
teecat
21.06.2016 13:05Перевод конечно…
14 пропеллерных двигателей на электрической тяге.
По русски как я понимаю электродвигатель с передачей мощности на винт без необходимости применения редуктора
Разработчики из НАСА считают, что распределение электроэнергии между встроенными в крылья пропеллерными двигателями приведёт к пятикратному снижению энергии во время полёта частного самолета на крейсерской скорости 280 км/ч. Если раньше для экономии топлива самолётам приходилось летать на меньших скоростях, то электрические двигатели устраняют такое ограничение
Вот не понял. Как от распределения энергии по всем двигателям не снизится скорость, но уменьшится энергопотребление? Речь идет о возможности отключения двигателей? Так они тогда мертвой массой будут висеть весь полет раз и портить аэродинамику крыла — два
Кроме того, электросамолёт на аккумуляторах сократит выбросы вредных веществ в атмосферу, по сравнению с обычными двигателями.
Перенесет выбросы в место выработки электроэнергии/потребует создать больше зеленой энергетики. А вот что существенно на самом деле — сократятся выбросы вредных веществ на высоте, что вроде как регулируется
pavlick
В чем заключается беззвучность? Основной шум винтового самолета идет от винтов, а не от двигателей.
olegkrasnov
Мне кажется это не так. По крайней мере, сравнивая современные квадрокоптеры с ДВС-авиамоделями из детства, могу сказать, что основной шум как раз создавал движок, а не винт.
pavlick
Пока я не начал делать коптер, я тоже так думал.
Вот так двигатель работает без пропеллера:
https://www.youtube.com/watch?v=qmy8RsGS6lg
Вот так тот же двигатель работает с пропеллером 1755:
https://www.youtube.com/watch?v=fef2xW0-BKQ
Оба теста проводились от старенького БП от компа (с напряжением 12В вместо требующихся 24В)
Я, прошу прощения, отрицательный, поэтому, видимо, видео у меня не вставились
olegkrasnov
Да, заметно громче винт жужжит. А ДВС движка у вас под рукой нет? Чтобы сравнить шум с электро.
pavlick
нет, двс меня не заводят)))
unnk2004
Уровень шума, создаваемый винтами, зависит от их размера и скорости вращения. Видимо, какой-то из этих параметров (а может и оба) в X-57 меньше в сравнении с самолетами с ДВС.
Prog23
Не так: у ДВС шум превышает шум винтов, а у эл. двигателя шум значительно меньше, чем у ДВС и поэтому основным источником являются винты.
k155la3
Винт при желании можно сделать почти полностью бесшумным. Было б желание (ведь за бесшумность нужно платить)
Prog23
Согласен. Вот тогда электросамолеты и станут практически бесшумными…
VaalKIA
Недавно была статья про бесшумный фен, он шумит сильно, но за диапазоном слышимости человека, плата — не велика.
vasimv
Большую часть шума винтов — составляют вибрации. Которые, в свою очередь, часто происходят из-за плохой центровки винтов. Попробуйте отцентрировать пропеллер, будет меньше шуметь.
Ну и модельный ДВС такой мощности — будет шуметь даже сильнее (и на довольно высокой слышимой частоте). Для сравнения можно посмотреть видео с коптером stingray — его умельцы переделывали в коптер с калильным движком. Шумит довольно сильно. А в случае электрического двигателя — там едва пропеллеры слышны.
pavlick
Мои винты сбалансированы. Я не говорю что ДВС вообще звука не производит, конечно же, он шумит. Но взнос винтов ничуть не меньший. Этому самолету очевидно тяга на каждый двигатель нужна будет меньше, благодаря их количеству.
Но беззвучным он в любом случае не будет.
andrey_aksamentov
От двигателей идет основной шум. Добавляет шума вибрация пропеллеров, через вал на корпус двигателя.
youtu.be/RW-G7pF6gUQ
k155la3
Авиадвигатели без глушителей :) таки вносят свою часть.
А основной шум от винтов создаёт кончик лопасти, который движется на трансзвуке или даже на сверхзвуке (скажем, Ту-95 такой шумный именно поэтому)
Большее количество пропеллеров позволяет разгонять винты до меньшей скорости.
Этот рецепт давно известен, но его сложно применить с ДВС. Если иметь электродвижение или электропередачу, то можно немного снизить несущую способность единичного винта и получить почти полную бесшумность.
Хотя такое количество винтов, конечно, не ради шума. Это увеличивает ещё и пропульсивный КПД движителя (отношение тяга/мощность).
pavlick
в моем случае до трансзвука, конечно не дотягивало.
Диаметр 17", мотор kv330, напряжение 24В — по моим рассчетам на краю лопасти винта должны дать 160м/с.
Этот винт мне потом подарил прекрасных 8 швов на руке.
k155la3
Тогда сильно шуметь не должен.
Значит проблемы с расчётом аэродинамики, центровкой или — тоже часто бывает на модельных винтах — недостаточной жёсткостью лопасти.
Да, большой мощный винт — это зло… стараюсь держаться подальше от юных вертолётчиков с большими моделями. Там лопасти хрупкие, о кость наверняка сломаются, но вот мясо режут только так. Полно видео на ютубе.
pavlick
винты карбоновые, должны быть достаточно прочные. Жесткости, да, можно было бы и побольше. Но «бабочки» не наблюдал. Мне как-то не приходило в голову проверять на костях ) и так весьма повезло ))
k155la3
Не, ну прочность и жёсткость — всё-таки очень разные вещи, а шумят винты из-за недостатка именно жёсткости.
pavlick
В вашем посте сначала было про жесткость, потом про хрупкость. Или хрупкость и прочность тоже из разных плоскостей? Я сопромату не обучен
k155la3
Да, немного разное.
Жёсткость — способность материала воспринимать нагрузки без прогиба.
Хрупкость — способность разрушаться без остаточных деформаций, непластично, не течь под нагрузкой. Короче, «пластичность наоборот».
А прочность — это способность материала нести нагрузки.
Всё это три более-менее независимые вещи. Как-то связаны только жёсткость и хрупкость: сложно представить себе материал, который хрупкий, но не жёсткий. Хотя наоборот — бывает запросто.