Искусственный интеллект врывается в нашу жизнь. В будущем, наверное, все будет классно, но пока возникают кое-какие вопросы, и все чаще эти вопросы затрагивают аспекты морали и этики. Можно ли издеваться над мыслящим ИИ? Когда он будет изобретен? Что мешает нам уже сейчас написать законы робототехники, вложив в них мораль? Какие сюрпризы преподносит нам машинное обучение уже сейчас? Можно ли обмануть машинное обучение, и насколько это сложно?
Сильный и Слабый ИИ — разные вещи
Есть две разных вещи: Сильный и Слабый ИИ.
Сильный ИИ (true, general, настоящий) — это гипотетическая машина, способная мыслить и осознавать себя, решать не только узкоспециализированные задачи, но и еще и учиться чему-то новому.
Слабый ИИ (narrow, поверхностный) — это уже существующие программы для решения вполне определенных задач, таких как распознавание изображений, автовождение, игра в Го и т. п. Чтобы не путаться и никого не вводить в заблуждение, мы предпочитаем называть Слабый ИИ «машинным обучением» (machine learning).
Сильный ИИ будет еще нескоро
Про Сильный ИИ еще неизвестно, будет ли он вообще когда-нибудь изобретен. С одной стороны, до сих пор технологии развивались с ускорением, и если так пойдет и дальше, то осталось лет пять.
![](https://habrastorage.org/webt/_i/sv/en/_isvenid4vjjjfsvl5nhnve4xee.jpeg)
С другой стороны, мало какие процессы в природе в действительности протекают по экспоненте. Гораздо чаще все-таки мы видим логистическую кривую.
![](https://habrastorage.org/webt/72/uq/hj/72uqhj_g_zj1dn6wq62ewvczwya.png)
Пока мы где-то слева на графике, нам кажется, что это экспонента. Например, еще недавно население Земли росло с таким ускорением. Но в какой-то момент происходит «насыщение», и рост замедляется.
Когда экспертов опрашивают, выясняется, что в среднем ждать еще лет 45.
![](https://habrastorage.org/webt/3r/ro/h4/3rroh4slw6_2yu-lpodoret9vxq.png)
Что любопытно, североамериканские ученые считают, что ИИ превзойдет человека через 74 года, а азиатские — что всего через 30. Возможно в Азии они что-то такое знают…
Эти же ученые предсказывали, что машина будет переводить лучше человека к 2024 году, писать школьные сочинения — к 2026-му, водить грузовики — к 2027-му, играть в Го — тоже к 2027-му. С Го уже промашка вышла, ведь этот момент наступил в 2017-м, всего через 2 года после прогноза.
Ну, а вообще, прогнозы на 40+ лет вперед — дело неблагодарное. Это означает «когда-нибудь». Например, рентабельную энергию термоядерного синтеза тоже прогнозируют через 40 лет. Такой же прогноз давали и 50 лет назад, когда ее только начали изучать.
![](https://habrastorage.org/webt/pi/3u/v-/pi3uv-ptktxeymxbjxl2_mxrujs.png)
Сильный ИИ порождает массу этических вопросов
Хоть Сильный ИИ ждать долго, но мы точно знаем, что этических проблем будет хватать. Первый класс проблем — мы можем обидеть ИИ. Например:
- Этично ли мучить ИИ, если он способен чувствовать боль?
- Нормально ли оставить ИИ без общения надолго, если он способен чувствовать одиночество?
- А можно использовать его как домашнее животное? А как раба? А кто это будет контролировать и как, ведь это программа, которая работает «живет» в вашем «смартфоне»?
Сейчас никто не возмутится, если вы обидите своего голосового помощника, но если вы будете плохо обращаться с собакой, вас осудят. И это не потому, что она из плоти и крови, а потому, что она чувствует и переживает плохое отношение, как это будет и с Сильным ИИ.
Второй класс этических проблем — ИИ может обидеть нас. Сотни таких примеров можно найти в фильмах и книгах. Как объяснить ИИ, чего же мы от него хотим? Люди для ИИ — как муравьи для рабочих, строящих плотину: ради великой цели можно и раздавить парочку.
Научная фантастика играет с нами злую шутку. Мы привыкли думать, что Скайнет и Терминаторов пока нет, и будут они нескоро, а пока можно расслабиться. ИИ в фильмах часто вредоносный, и мы надеемся, что в жизни такого не будет: ведь нас же предупредили, и мы не такие глупые, как герои фильмов. При этом в мыслях о будущем мы забываем хорошо подумать о настоящем.
Машинное обучение уже здесь
Машинное обучение позволяет решать практическую задачу без явного программирования, а путем обучения по прецедентам. Подробнее вы можете почитать в статье «Простыми словами: как работает машинное обучение».
Так как мы учим машину решать конкретную задачу, то полученная математическая модель (так называется алгоритм) не может внезапно захотеть поработить/спасти человечество. Нормально делай — нормально будет. Что же может пойти не так?
![](https://habrastorage.org/webt/cr/ng/y6/crngy6nspkfqx_7uxxt_trxffnk.png)
Плохие намерения
Во-первых, сама решаемая задача может быть недостаточно этичной. Например, если мы при помощи машинного обучения учим дронов убивать людей.
![](https://habrastorage.org/webt/2w/cq/oi/2wcqoiuu8xuass9vd7uulmkkc9m.png)
https://www.youtube.com/watch?v=TlO2gcs1YvM
Как раз недавно по этому поводу разгорелся небольшой скандал. Компания Google разрабатывает программное обеспечение, используемое для пилотного военного проекта Project Maven по управлению дронами. Предположительно, в будущем это может привести к созданию полностью автономного оружия.
![](https://habrastorage.org/webt/sr/wa/ei/srwaeiionmujk7cx1zj-fzf-s0g.jpeg)
Источник
![](https://habrastorage.org/webt/8f/zx/1m/8fzx1mjghd0aq-e0yfrrsowwhuq.png)
«Жадная» предвзятость
Но даже если авторы алгоритма машинного обучения и не хотят убивать людей и приносить вред, они, тем не менее, часто все-таки хотят извлечь выгоду. Иными словами, не все алгоритмы работают на благо общества, очень многие работают на благо создателей. Это часто можно наблюдать в области медицины — важнее не вылечить, а порекомендовать побольше лечения.
![](https://habrastorage.org/webt/8f/zx/1m/8fzx1mjghd0aq-e0yfrrsowwhuq.png)
Ну, а еще иногда и само общество не заинтересовано, чтобы полученный алгоритм был образцом морали. Например, есть компромисс между скоростью движения транспорта и смертностью на дорогах. Мы могли бы сильно снизить смертность, если бы ограничили скорость движения до 20 км/ч, но тогда жизнь в больших городах была бы затруднительна.
Этика — лишь один из параметров системы
![](https://habrastorage.org/webt/cr/ng/y6/crngy6nspkfqx_7uxxt_trxffnk.png)
Выходит, что этические вопросы должны быть среди целей системы изначально.
Этику сложно описать формально
С этикой одна проблема — ее сложно формализовать. В разных странах разная этика. Она меняется со временем. Например, по таким вопросам, как права ЛГБТ и межрасовые/межкастовые браки, мнение может существенно измениться за десятилетия. Этика может зависеть от политического климата.
![](https://habrastorage.org/webt/oe/bj/x9/oebjx9ygsiqyfs-zap5diznne2i.png)
![](https://habrastorage.org/webt/8f/zx/1m/8fzx1mjghd0aq-e0yfrrsowwhuq.png)
Машинное обучение влияет на людей
Представьте систему на базе машинного обучения, которая советует вам, какой фильм посмотреть. На основе ваших оценок, выставленных другим фильмам, и путем сопоставления ваших вкусов со вкусами других пользователей система может довольно надежно порекомендовать фильм, который вам очень понравится.
![](https://habrastorage.org/webt/8f/zx/1m/8fzx1mjghd0aq-e0yfrrsowwhuq.png)
Но при этом система будет со временем менять ваши вкусы и делать их более узкими. Без системы вы бы время от времени смотрели и плохие фильмы, и фильмы непривычных жанров. А так, что ни фильм — то в точку. В итоге мы перестаем быть «экспертами по фильмам», а становимся только потребителями того, что дают. Интересно еще и то, что мы даже не замечаем, как алгоритмы нами манипулируют.
Если вы скажете, что такое воздействие алгоритмов на людей — это даже хорошо, то вот другой пример. В Китае готовится к запуску Система социального рейтинга — система оценки отдельных граждан или организаций по различным параметрам, значения которых получают с помощью инструментов массового наблюдения и используя технологию анализа больших данных.
![](https://habrastorage.org/webt/cr/ng/y6/crngy6nspkfqx_7uxxt_trxffnk.png)
В итоге выходит, что благодаря Системе граждане сознательно или подсознательно начинают вести себя по-другому. Меньше общаться с неблагонадежными гражданами, больше покупать подгузников и т. п.
Алгоритмическая системная ошибка
Помимо того, что мы порой сами не знаем, чего хотим от алгоритма, существует еще и целая пачка технических ограничений.
Алгоритм впитывает несовершенство окружающего мира.
![](https://habrastorage.org/webt/8f/zx/1m/8fzx1mjghd0aq-e0yfrrsowwhuq.png)
В Microsoft однажды учили чат-бота общаться в Twitter’е. Его пришлось выключить менее чем через сутки, потому что бот быстро освоил ругательства и расистские высказывания.
![](https://habrastorage.org/webt/-o/vn/yb/-ovnybi6tui2yl-e3jewbkjlkae.png)
Кроме этого, алгоритм при обучении не может учесть какие-то неформализуемые параметры. Например, при расчете рекомендации подсудимому — признать или не признать вину на основе собранных доказательств, алгоритму сложно учесть, какое впечатление такое признание произведет на судью, потому что впечатление и эмоции нигде не записаны.
Ложные корреляции и «петли обратной связи»
Ложная корреляция — это когда кажется, что чем больше пожарных в городе, тем чаще пожары. Или когда очевидно, что чем меньше пиратов на Земле, тем теплее климат на планете.
![](https://habrastorage.org/webt/ch/d6/yy/chd6yybu-p8-kwd90abngmtlnm8.jpeg)
Так вот — люди подозревают, что пираты и климат не связаны напрямую, и с пожарными не все так просто, а матмодель машинного обучения просто заучивает и обобщает.
![](https://habrastorage.org/webt/8f/zx/1m/8fzx1mjghd0aq-e0yfrrsowwhuq.png)
Хуже ложных корреляций только петли обратной связи. Программа предупреждения преступности в Калифорнии предлагала отправлять больше полицейских в черные кварталы, основываясь на уровне преступности (количестве зафиксированных преступлений). А чем больше полицейских машин в области видимости, тем чаще жители сообщают о преступлениях (просто есть кому сообщить). В итоге преступность только возрастает — значит, надо отправить еще больше полицейских, и т. д.
Иными словами, если расовая дискриминация — фактор ареста, то петли обратной связи могут усилить и увековечить расовую дискриминацию в деятельности полиции.
Кого винить
В 2016 году Big Data Working Group при Администрации Обамы выпустила отчет, предупреждающий о «возможном кодировании дискриминации при принятии автоматизированных решений» и постулирующий «принцип равных возможностей».
Но сказать-то легко, а что же делать?
![](https://habrastorage.org/webt/8f/zx/1m/8fzx1mjghd0aq-e0yfrrsowwhuq.png)
Во-вторых, нам сложно понять и объяснить решения машинного обучения. Например, нейронная сеть как-то расставила внутри себя весовые коэффициенты, чтобы получались правильные ответы. А почему они получаются именно такими и что сделать, чтобы ответ поменялся?
![](https://habrastorage.org/webt/8f/zx/1m/8fzx1mjghd0aq-e0yfrrsowwhuq.png)
Остается принимать законы и полагаться на машинное обучение
Выходит, винить некого, остается принимать законы и постулировать «этические законы робототехники». Германия как раз недавно, в мае 2018 года, выпустила такой вот свод правил по поводу беспилотных автомобилей. Среди прочего там записано:
- Безопасность людей — наивысший приоритет по сравнению с уроном животным или собственности.
- В случае неизбежной аварии не должно быть никакой дискриминации, ни по каким факторам недопустимо различать людей.
Но что особенно важно в нашем контексте:
Автоматические системы вождения становятся этическим императивом, если системы вызывают меньше аварий, чем водители-люди.
Очевидно, что мы будем все больше и больше полагаться на машинное обучение — просто потому, что оно в целом будет справляться лучше людей.
Машинное обучение можно отравить
И тут мы подходим к не меньшей напасти, чем предвзятость алгоритмов — ими можно манипулировать.
Отравление машинного обучения (ML poisoning) означает, что если кто-то принимает участие в обучении матмодели, то он может влиять на принимаемые матмоделью решения.
Например, в лаборатории по анализу компьютерных вирусов матмодель ежедневно обрабатывает в среднем по миллиону новых образцов (чистых и вредоносных файлов).
![](https://habrastorage.org/webt/8f/zx/1m/8fzx1mjghd0aq-e0yfrrsowwhuq.png)
Так вот, злоумышленник может постоянно генерировать вредоносные файлы, очень похожие на какой-то чистый, и отправлять их в лабораторию. Граница между чистыми и вредоносными файлами будет постепенно стираться, модель будет «деградировать». И в итоге модель может признать оригинальный чистый файл вредоносом — получится ложное срабатывание.
И наоборот, если «заспамить» самообучающийся спам-фильтр тонной чистых сгенерированных писем, то в итоге удастся создать такой спам, который через фильтр пройдет.
Поэтому в «Лаборатории Касперского» многоуровневый подход к защите, мы не полагаемся только на машинное обучение.
Другой пример, пока вымышленный. В систему распознавания лиц можно добавлять специально сгенерированные лица, чтобы в итоге система стала путать вас с кем-то другим. Не надо думать, что это невозможно, взгляните на картинку из следующего раздела.
![](https://habrastorage.org/webt/8f/zx/1m/8fzx1mjghd0aq-e0yfrrsowwhuq.png)
Взлом машинного обучения
Отравление — это воздействие на процесс обучения. Но необязательно участвовать в обучении, чтобы получить выгоду — обмануть можно и готовую матмодель, если знать, как она устроена.
![](https://habrastorage.org/webt/78/tn/ea/78tneahwtmergijhapcs5cg5no4.png)
![](https://habrastorage.org/webt/qq/hf/uv/qqhfuvjsdh5m9t8i8kd-l9wnxqo.png)
Этот пример с лицами пока не встречался в «дикой природе» — именно потому, что никто пока не доверил машине принимать важные решения, основываясь на распознавании лиц. Без контроля со стороны человека будет именно так, как на картинке.
Даже там, где, казалось бы, нет ничего сложного, машину легко обмануть неведомым для непосвященного способом.
![](https://habrastorage.org/webt/pb/_6/1b/pb_61bjjv5nnw5kxwxwcbifkm20.png)
Первые три знака распознаются как «Ограничение скорости 45», а последний — как знак STOP
![](https://habrastorage.org/webt/qq/hf/uv/qqhfuvjsdh5m9t8i8kd-l9wnxqo.png)
![](https://habrastorage.org/webt/_c/du/mj/_cdumjxqnp1ojmvp2i-orq-8uke.png)
Если к панде слева добавить минимальный специальный шум, то машинное обучение будет уверено, что это гиббон
![](https://habrastorage.org/webt/cr/ng/y6/crngy6nspkfqx_7uxxt_trxffnk.png)
Аналогично можно будет «взломать» китайскую Систему социального рейтинга и стать самым уважаемым человеком в Китае.
Заключение
Давайте подытожим, что мы успели обсудить.
![](https://habrastorage.org/webt/p4/ca/et/p4caet8far6cj7xuvafv8e6qddq.png)
![](https://habrastorage.org/webt/cr/ng/y6/crngy6nspkfqx_7uxxt_trxffnk.png)
- Сильного ИИ пока нет.
- Мы расслаблены.
- Машинное обучение будет сокращать количество жертв в критических областях.
- Мы будем полагаться на машинное обучение все больше и больше.
- У нас будут добрые намерения.
- Мы даже будем закладывать этику в дизайн систем.
- Но этика тяжело формализуется и различна в разных странах.
- В машинном обучении полно предвзятости по разным причинам.
- Мы далеко не всегда можем объяснить решения алгоритмов машинного обучения.
- Машинное обучение можно отравить.
- И даже «взломать».
- Злоумышленник так может получить преимущество перед другими людьми.
- Машинное обучение оказывает влияние на наши жизни.
И все это — ближайшее будущее.
Комментарии (55)
Exchan-ge
31.08.2018 01:57Сильный ИИ (true, general, настоящий)
Неудачная калька с английского.
Есть более правильный по смыслу вариант — «искусственный разум» (любимое детище фантастов)
Соответственно «Слабый ИИ (narrow, поверхностный)» — просто «искусственный интеллект»
(в русском языке «слабый интеллект=дурак» )
Welran
31.08.2018 09:27Строго говоря собак запрещено обижать не потому что они чувствуют и переживают, а потому что люди чувствуют и переживают когда кто то обижает собак.
ZuOverture
31.08.2018 17:28Возможно, это потому, что у обоих видов эмпатия работает по отношению друг к другу. Не демонстрировали бы собаки свои чувства к людям — всё могло бы быть совсем иначе.
worldmind
31.08.2018 10:21если бы ограничили скорость движения до 20 км/ч, но тогда жизнь в больших городах была бы затруднительна.
именно поэтому во многих европейских городах уже на многих улицах ограничение 30 км/ч, и уже обсуждается что надо бы сделать 20, тыц, тыц.T-362
31.08.2018 12:50Не стоит по примеру Варламова растягивать частные случаи на весь город. Вторая ссылка отлично показывает на четкое разделение в пределах города — три категории: мелкие городские улицы, где те самые 20-30, простые городские улицы — обычно 50 (те, что в Париже хотят сделать 20), и городские магистрали с >60.
MaxVetrov
31.08.2018 13:19Ооо =) Вот и лобби велосипедов =)
T-362
31.08.2018 13:37Наоборот, меня люто бесит что тут в Эстонии очень отсталые ограничения в городах — есть «жилая зона» — 20, и остальное «город» — 50. И при этом через Таллин проходят минимум три полноценных длинных шоссе по которым всё вяло ползет на 50.
А на велосипеде я вообще ездить не умею.
Vlad_fox
31.08.2018 10:31+1Что любопытно, североамериканские ученые считают, что ИИ превзойдет человека через 74 года, а азиатские — что всего через 30.
очевидно же — превзойти среднеазиатского ученого, например из Пакистана в среднем намного проще, чем среднесевероамериканского — из шатов или Канады.
MaxVetrov
31.08.2018 11:52Меньше общаться с неблагонадежными гражданами, больше покупать подгузников.
Т.е. от того что ты не общаешься с неблагонадежными гражданами, у тебя возникает потребность покупать больше подгузников? =))
NeoCode
Прежде всего, «сильный ИИ» это не живое существо и не будет способен испытывать ни боль, ни одиночество, просто потому что его природа изначально другая, у него нет миллионов лет эволюции и естественного отбора, и следовательно — низкоуровневых биологических механизмов и программ. У него не будет даже инстинкта самосохранения, если специально не запрограммировать конечно. Но в чистом виде — не будет; можно создать ИИ, обладающий сознанием и способный решать сложнейшие задачи и обучаться, и при этом не обладающий инстинктом самосохранения вообще.
Вот это важный момент, который многие почему-то не понимают, по умолчанию «очеловечивая» искусственный разум.
Sirion
Справедливости ради стоит отметить, что мы не так много знаем о разуме. Может (ну, чисто гипотетически) случиться так, что для создания сильного ИИ математически необходимо реализовать в нём некие механизмы, которые при должном воображении можно счесть страданием или страхом.
Hardcoin
А что это за "природа" у людей, которая позволяет на испытать боль, а ИИ — нет? Можно подробнее? Это что-то измеримое (хотя бы в теории) или вы о душе?
NeoCode
Я не о душе, а о том что эволюционно человек произошел от животных, и весь наш разум — тонкая обертка вокруг нервной (и не только) системы животного. Со всеми системами регуляции организма, с инстинктами, со всем что необходимо для выживания и размножения автономной биологической системы в дикой природе. Это все определяет работу нашего разума. У компьютера совершенно другая природа, ему не нужно ни выживать ни размножаться. У него нет миллионов лет отбора, сформировавшего опыт боли, страдания, страха и других эмоций. Понимаете откуда взялся страх? У особей, которые не боялись, было больше шансов быть сожранными хищниками, чем у тех кто боялся и принимал меры предосторожности. Откуда взяться страху у ИИ, у которого нет вообще никакого естественного отбора?
JustDont
Надстройка, а не обертка. Это принципиально другая вещь.
У компьютера — да. Но компьютер не ИИ.
Эмоции — не эволюционное наследие. Как минимум, эмоции — это продукт рефлексии и саморефлексии нашего разума по разнообразным биохимическим поводам, включая эволюционное наследие.
Пока совершенно неясен минимальный набор функциональности для создания человекоподобного (а другого у нас для вас нет, как говорится) разума — это остаётся риторическим вопросом. Возможно, без этого просто ничего не взлетит.
Hardcoin
Ну и что? Если сделают ИИ и он скажет, что испытывает боль — вы ему ответите, что он врёт, потому что не было миллионов лет отбора? Это не довод.
Если вы спросите, откуда возьмётся боль — люди сделают. Просто потому что могут (когда смогут). И когда он попросит не причинять ему боль, вы что ответите? "Ты не живой"? Как вы это обоснуете? Ну кроме происхождения, конечно. Тут-то просто — если сделали на фабрике, сочувствия не достоин. Но не все люди с этим согласятся.
qw1
Hardcoin
Как и с людьми — надёжно — никак. Вот только комиссии по защите чувств людей не существует, можно и для роботов такую тоже не делать )
qw1
Для людей есть такие комиссии — суды называются.
Там можно ответить за причинение боли, или оскорбление чувств.
Hardcoin
Суд, он по закону. Это не комиссия по этике. Если потребуется суд для роботов — сделают. И если робот захочет манипулировать — пусть в суде робосудье докажет свои страдания )
agat000
Суд решает и моральной этические вопросы. Оскорбление, моральный ущерб, репутация и прочее. В основном по формальным признакам, прописанным в разных кодексах. Надо будет — и робосудья признаёт моральный вред ИИ от юзера. Если таковой вред наказуемым согласно законодательства.
Hardcoin
Согласен. Я это к тому, что принципиально новых вызовов не возникает. Принципиально новое только одно — будем ли мы считать, что робот может испытать боль, при условии, что он очень убедительно это показывает. Если да — верить ему или не верить, можно решать через кодексы (или ещё как). Если нет — мы можем запретить создание роботов, показывающих негативные эмоции. И уголовно наказывать тех, кто будет пробовать таких создавать.
michael_vostrikov
Отладчиком посмотреть.
shockable
Эти миллионы лет можно симулировать быстрее
habr.com/post/415461: На данный момент боты наиграли около 180 лет
А кто мешает учить систему ценить выживаемость? Ставите как цель и система обучается принимать решения, которые повышают шанс выживаемости. Представьте простого бота, который убегает от игрока, если оценивает событие встречи с ним, как снижение вероятности выживаемости. Добавляем опцию «убить игрока». Добавляем опцию «оценить группу игроков». Получаем: выгоднее «убить одинокого игрока», чтобы уменьшить вероятность события «встреча с группой игроков».
vassabi
shockable
Это была цитата. Суть моего сообщения — не обязательно ждать миллион лет, чтобы получить миллион лет опыта.
michael_vostrikov
И вот мы подходим к тому, о чем говорится в статье. Насколько этично делать группу ботов, которые способны чувствовать боль и страх, и заставлять их сражаться друг с другом в стиле "останется только один"? Или дать им возможность объединяться в группы и сделать цель уменьшать вероятность нападения других групп?
С другой стороны, боль можно заменить прагматичным страхом повреждений, когда бот знает, что если он ранен в руку, то будет хуже махать мечом, хоть ничего и не чувствует. Это то же самое, что и боль, или нет? Или дело только в коэффициенте влияния?
michael_vostrikov
Как я понимаю, вопрос в том, насколько этично добавлять в ИИ какие-нибудь «нейроны боли» и потом на них воздействовать.
tretyakovpe
«нейроны боли» для ИИ это просто дачики, сигнализирующие об опасном для функционирования отклонении какого-либо параметра оборудования (или его части). «Боль» — это просто термин.
Hardcoin
А для людей? В чем отличие? Желательно надёжное. Утверждение, что человек "чувствует боль" — не отличие, робот тоже может так сказать.
black_semargl
Для людей боль или удовольствие как правило замкнуты через химическое воздействие. Наверно просто импульсы для «окраски» не годятся.
Hardcoin
Именно химическое воздействие — настоящая боль, а электрическое — не настоящая? Так и вижу борьбу за права электрических. "Электрическая боль — тоже боль!"
На практике, мы не знаем, что же такого особенного в ощущениях. Чем они отличаются от сигналов. А если не знаем, то требовать от ИИ подчинения у нас может не получиться. Он может не согласиться просто так (по неизвестному сбою, например) и чем это закончится — не ясно.
black_semargl
Ну во-первых вообще все межнейронные взаимодействия — на химии, а не электрические.
И в-вторых — если мы напрямую возбудим нейрон отвечающий за ощущение боли — то это ненастоящая боль, хотя подопытный разницы не поймёт.
Hardcoin
У биологических людей — да. У обсуждаемых роботов будет, вероятно, именно электрическое.
Аргументируйте. Что значит не настоящая? В смысле, такую боль можно игнорировать? А сможете?
michael_vostrikov
У биологических организмов это тоже датчики. Они обращают на себя внимание негативными сигналами, и их нельзя отключить. Для ИИ можно сделать так же.
tretyakovpe
Люди-экстремалы любят возбуждать «дачики опасности для жизни» для получения химического вознаграждения.
Узнаем ли мы, если ИИ будет опасно перестраивать таблицу машрутизации, с риском отключиться от какой-либо важной для функционирования системы, чтобы получить новый опыт или какую-то другую «радость»? :)
michael_vostrikov
Узнаем ли мы, если ИИ на гору полезет для нового опыта? Он ИИ, а не невидимка, тут нет никаких отличий от людей.
worldmind
Ещё как будет чувствовать, ведь обучение с подкреплением — негативное подкрепление и есть аналог боли.
black_semargl
Тут вопрос больше в том что надо как-то разделять «настоящий искусственный» и «кремниевую копию естественного», который был просто перенесён на другой носитель возможно даже без понимания как он собственно работает.