Чтобы разогнать частицы до скорости, близкой к световой, вам необходим мощный источник энергии. В космосе звёзды могут разгонять частицы до довольно больших энергий, а взрывы сверхновых – создавать ещё более сильные вспышки. Самые сильные постоянные источники высокоэнергетических частиц – сверхмассивные чёрные дыры, встречающиеся в центрах крупнейших галактик. Но читатель, рассматривая структуры на крупнейших масштабах Вселенных, кое-чего не смог понять:
Мне очень понравилось видео с симуляции Illustris [компьютерная космологическая симуляция формирования галактик], настолько, что я нарыл её описание. И удивился: «То, что кажется взрывами, на самом деле исходит от сверхмассивных чёрных дыр, отправляющих потоки материала в межгалактическое пространство, вырезая при этом огромные пузыри». Это мне непонятно, поскольку я думал, что эти потоки материала летят по направлению одной оси, а не вырисовывают сферы.
Если кто из вас не видел её, то вот вам симуляция от проекта Illustris, показывающая эволюцию крупномасштабных структур, тёмной материи, газа и обычной материи, от самых ранних этапов развития Вселенной до наших дней.
На видео, примерно с момента 1:08, а особенно с момента 1:25, когда там появляется тёмная материя рядом с газом, заметны взрывы, происходящие в крупнейших узлах крупномасштабной структуры Вселенной. Их можно принять за взрывы сверхновых, но на самом деле такие взрывы случались бы слишком часто – по нескольку десятков тысяч раз на каждый кадр симуляции. Мы ведь и тёмную материю не можем увидеть, но симуляция демонстрирует её, чтобы помочь нам понять явление, оказывающее гравитационное взаимодействие. А если вам интересно, чем отличаются гравитационные эффекты от формирования структур и эффекты нормальной материи – находящейся в большинстве своём в форме газа – симуляция может продемонстрировать и это.
Тогда как тёмная материя формирует эти простые нитевидные структуры, управляемые лишь гравитационным притяжением и расширением Вселенной, физика нормальной материи – газа из протонов, нейтронов и электронов – гораздо сложнее. Газ не только собирается в комки, позволяющие ему формировать звёзды, галактики и скопления галактик, он также чувствителен к целому набору электромагнитных сил. Это значит, что на малых масштабах он кучкуется сильнее тёмной материи, а на больших межгалактических и межскопленческих масштабах он более рассеян, поскольку газ (и ионизированный газ в виде плазмы) может разгоняться до огромных скоростей.
Видео с четырьмя панелями демонстрирует звёзды и видимый свет, который должен зарождаться в регионе космоса размером в 33 миллиона световых лет в левой верхней панели, плотность газа в правой верхней, и – что самое важное – температуру газа в левой нижней панели. Обратите внимание на то, как температура газа повышается в местах тех самых сферических взрывов, появляющихся в основном из-за сверхмассивных чёрных дыр. Есть и другие важные механизмы разогрева газа и обратной связи, но конкретно эти особенности происходят из-за взрывов сверхмассивных чёрных дыр, продолжающихся от миллионов до сотен миллионов лет.
Галактика Центавра А, композиция из видимого света, инфракрасного и рентгеновского излучения
Но я понимаю, почему вы ожидаете, что этот разогрев примет форму сведённых в пучки потоков, поскольку именно это мы и наблюдаем, смотря, например, на сверхмассивные чёрные дыры в сердце галактики Центавра А, или в гигантской эллиптической галактике Мессье 87, ниже.
Галактика М87 и сильно коллимированный поток длиной 5000 световых лет
Так что, если материя в этих потоках ускоряется по таким сильно концентрированным линейным пучкам, почему же газ нагревается и расширяется таким очевидно сферическим манером? Чтобы ответить на этот вопрос, я попрошу вас подумать о том, о чём вы обычно не вспоминаете: о том, что видимая нами Вселенная не совпадает с реальной. К примеру, вот фото той же самой галактики, М87, и её джета, видимых в рентгеновском диапазоне телескопом Чандра (синий) и в радиоволнах телескопом VLT (красный), вместо того изображения, полученного телескопом Хаббла в видимом и ультрафиолетовом диапазонах.
И это уже никакие не джеты, не так ли? Они не сферические, но однозначно не вытянуты в линию. Причин тому две:
1. Газ и обычная материя постоянно притягиваются крупными галактиками и всеми крупномасштабными структурами, и большая часть спокойно проходит через этот джет.
2. Даже если галактика не двигается, то газ на её окраине крутится и совершает необычные движения, что приводит к его равномерному распределению.
Даже наш Млечный путь, со своей довольно спокойной и небольшой сверхмассивной чёрной дырой, демонстрирует два огромных лепестка высокоэнергетического излучения, обнаруженные телескопом Ферми.
Активное исследование, изучавшее излучение огромного количества источников, очень далеко продвинулось не только благодаря использованию цифровых симуляций, включая и проект Illustris, но и в предшествовавшие их появлению годы. В тех расцветающих взрывах в симуляции Illustris, вы наблюдаете не видимый свет, а температуру газа, и происходящим мы обязаны ответной реакции чёрных дыр. Это должно служить напоминанием о том, что когда мы смотрим во Вселенную, как посредством обсерваторий, так и через симуляции, в ней происходит гораздо больше событий, чем это заметно благодаря достигающему наших глаз свету звёзд.
И хотя видимый свет может испускаться только узким участком джета, специфическое движение окружающего его газа вкупе с простейшими физическими эффектами теплопередачи делает всё, чтобы энергетический газ распределялся по всему пространству, а не только по прямым линиям. Важно помнить, что видимые вами взрывы – это не видимый свет или материя; это иллюстрации температуры газа, и именно эти взрывы и происходят вокруг активных чёрных дыр!
Поделиться с друзьями
Комментарии (7)
ReSpown
23.03.2017 20:43-1Если тёмная материя, влияет на движение околограничных звезд в галактике, то скорее всего тёмная материя проявится во взаимодействии с телом, движущимся/вращающемся со скоростью 250-300 км/сек. Увы, в данный момент такие скорости недоступны.
Хотя по последним теориям, значение скорости света уменьшается, при очень сильных гравитационных взаимодействиях, допустим вблизи поверхности Солнца, где скорость фотона составляает ВСЕГО 80 км/сек. А вот эти скорости в принципе достичь можно.
igruh
Как, находясь в плоскости галактики, можно обнаружить перпендикулярные плоскости лепестки излучения?
Sunexpo
igruh
Так Вы измеряете рассеянное или переизлучённое, что может быть вызвано другими причинами.
Sunexpo
Космическое пространство не такое пустое, как может показаться. Ну а разогретый теми или иными излучениями газ излучает во все стороны. А уж определение типа излучения так повлиявшего на материю думаю имеет свои отработанные методы. Возвращаясь к вашему первому вопросу: проблемы определить наличие перпендикулярного излучения нет.
igruh
Пространство ни разу не пустое, но тут измеряется полная диаграмма направленности из одного узла, на который напрямую вообще ничего не светит. Это, как минимум, требует модели для формы излучения.
maxzhurkin
Джеты — не излучение, а выбросы вещества