Органы чувств, насекомых, или полёт птицы зачастую воспринимаются человеком, как некий конструкт и изобретение великого творца. На самом деле мы знаем, что творец тут ни причём, и всё это появилось в результате эволюции и её движущей силы, естественного отбора. Однако это не мешает человечеству вдохновляться живой природой и на основе её материи пробовать повторить, или переплюнуть то, что она «запатентовала» в виде организмов, способных к полёту, или к эхолокации и радиационной чувствительности. 
Авторы сообщества Фанерозой: биолог и эколог Евгений Будько, а также руководитель проекта Фанерозой, биолог Ефимов Самир
Не соответствует тематике хабра! Низкий технический материал!
Эта статья абсолютно соответствует тематике всех хабов, в которых она находится (в том числе и коммерческого блога). Не рискуя удивить вечно негодующего и никому не известного ностальгирующего по прошлому критика в комментариях, добавлю, что писать мы можем о чём угодно, если материал качественный и интересен большинству компьютерщиков. И это понятное дело! Поэтому можете сколько угодно называть нас платными авторами, но и обсуждать тогда с платными авторами (только по вашему мнению), а также с коммерческими блогами и с администрацией проблему каких-либо публикаций на хабре, это бороться с ветряными мельницами. Рыцарство это конечно хорошо, но только тогда, когда в этом есть смысл. Но его нет, ибо попытка достучаться до нас в комментариях утонет в этом спойлере и обесценит ваш комментарий.



Помимо того, что данная статья соответствует всем хабам, в которых она находится, отмечу также, что она соответствует и той сложности технического материала, которую требуют от статьи данные хабы. Лучше переходите сразу к прочтению других материалов, которые соответствуют вашим потребительским предпочтениям. Открою вам истину капитана: лента Хабра настраивается так, как захотите вы! Не нравятся наши статьи, читайте те статьи, в которых пишут исключительно по IT! Не портите себе настроения, уважайте мнение других и хорошего Вам дня! Живите дружно!


И если с полётами большинство уже давно знакомо и самолёты видели практически все, то с организмами, способными точно чувствовать изменение радиационного фона, обстоит ситуация диаметрально противоположная. Сегодня в статье мы как раз и постараемся раскрыть вам подобные не очень популярные темы. Речь пойдёт о так называемом «патентном бюро» природы, которое люди активно стараются использовать в своих изобретениях при создании различных высокочувствительных приборов и монструозных машин.

▍Глаз таракана — дозиметр


Дозиметр – устройство, которое предназначено для измерения экспозиционной и поглощённой дозы, и эквивалентного им фотонного и нейтронного излучения. Данный прибор способен также вычислять мощности вышеуказанных величин. 


Принцип работы дозиметра основан на захвате ионизирующего излучения электронами. Захват происходит кристаллами люминофора. После нагревания эти кристаллы выпускают захваченные ими электроны в виде света. Интенсивность этого излучения измеряется прибором для определения количества излучения, которому он подвергался. 
В животном мире  тоже можно встретить «живые» дозиметры. Узнали мы о них благодаря биологическим и бионическим исследованиям, которые показали, что многие виды насекомых в ходе эволюции «приобрели» сенсорные системы, о которых человек и не мог  подумать.
Так, ещё в 60-70х гг. в ходе исследований по изучению глаза таракана было замечено, что на экране осциллографа появлялся сигнал, свидетельствующий о повышении радиоактивного излучения в тот момент времени, когда насекомое находилось вблизи источника опасности. При этом отмечалось, что эксперимент проводился в полной темноте. При повторении опыта было установлено, что всплеск возникал именно в тот момент, когда на глаз таракана «попадало» радиоактивное излучение. Это позволило сделать выводы, что эти животные «снабжены» высокочувствительным и ультраминиатюрным «счётчиком Гейгера».  

Глаза таракана

По мнению биологов, подобной чувствительностью обладают также  лесные муравьи. При попадании в зону даже слабой радиации, насекомые начинают суетиться и стремятся покинуть опасную зону. 

Глаза насекомых, ведущих сумеречный или ночной образ жизни, отличаются особыми скотопическими омматидиями.  В их экранирующих клетках пигменты могут мигрировать: при достаточном количестве света они распределяются равномерно (а), а при недостатке — скапливаются в верхней части клеток (б). В результате в тёмное время световое излучение с одного омматидия может попадать на рецепторные клетки соседних омматидиев. Возможно, что подобным способом некоторые насекомые  могут также ощущать повышение уровня радиции.


Рис. Н. Крюковой

Изучение таких сенсорных систем  может позволить в будущем создавать датчики сопоставимые с размерами рецепторов, которые представляют собой микроскопические клетки (но это не точно).   

▍Дельфины и летучие мыши — радар


 

Сегодня невозможно представить военное дело, гражданскую авиацию и флот без применения радаров и сонаров. Это наиболее незаменимый прибор на рыболовецких траулерах. Принцип работы радара основан на излучении импульса энергии (электромагнитной волны), который  отражается, возвращается и обрабатывается для получения нужной информации.


Средства звукового наблюдения времён Первой мировой войны. Источник

Этот вид ориентации в пространстве не обошла стороной и природа. В биологии и бионике данный способ ориентирования имеет название «эхолокация». Она получила широкое распространение среди живых организмов, которые используют её для обнаружения различных препятствий и поиска пищи.  Наиболее искусно эхолокацией овладели летучие мыши и дельфины.  


В древние времена казалось загадочной способность летучих мышей летать в абсолютной темноте. Люди не могли объяснить почему летучие мыши виртуозно ловят насекомых в полёте между деревьями и их многочисленными мелкими ветвями, не натыкаясь на встречные препятствия. 
Данный факт привлёк внимание выдающегося итальянского естествоиспытателя и натуралиста Ладзаро  Спалланцани. В 1793 г. натуралист проделал следующий опыт: он выпустил в тёмную лабораторию особь нетопыря, которая была им ослеплена. Результат поразил учёного: ослеплённое животное летало по комнате так же хорошо, как и зрячая, не задевая ни одного препятствия, которые Спалланцани хитро там расставил. Желая подтвердить исследование, натуралист лишил зрения ещё нескольких летучих мышей и после отпустил на волю. Через некоторое время учёный поймал ослеплённых животных и произвёл вскрытие. Было установлено, что слепота им никак не мешала добывать пропитание в виде различных насекомых.
Опыты Спалланцани были повторены в Швейцарии. Однако в этих экспериментах животным затыкали уши, и они стали натыкаться на расставленные препятствия. 

Узнав об опытах своего швейцарского коллеги Ш. Жюрина, итальянский учёный решил проверить их. Спалланцани в ходе нескольких высокоточных опытов установил, что нарушение зрения, осязания, обоняния и вкуса никак не влияло на полёт летучих мышей. Только при закрывании рта или ушей животные лишались способности уходить от расставленных препятствий. 

К сожалению результаты этих опытов не были приняты современниками Ладзаро  Спалланцани и только спустя полтора века  к  вопросу об уникальности летучих мышей вернулись вновь. Им  занялись три американца -  Г. Пирс, Д. Гриффин и Р. Галамбос. 


Дональд Гриффин (3 августа 1915— 7 ноября 2003) американский профессор зоологии различных университетов, биофизик, популяризатор науки, увлечённый натуралист

В  своих экспериментах с рукокрылыми американские исследователи плотно закупоривали животным рот или нос воском. В том и другом случае зверьки теряли способность обходить мелкие и большие препятствия в полной темноте. В дальнейшем исследователями был раскрыт главный секрет летучих мышей. Они обладают уникальными по своему совершенству органами ультразвуковой локации.
Благодаря специализированной аппаратуре, исследователи установили, что летучие мыши испускают неслышимый человеческому уху ультразвук и воспринимают его эхо, которое в полной темноте служит источником информации о препятствии или близкой добычи. Каковы же конструкция и режим работы природного локатора летучей мыши? 
Ещё до опытов американских исследователей  изобретатель автоматического пулемета Максим в 1912 году случайно выдвинул гипотезу о том, что для ориентации в пространстве летучие мыши используют эхо, исходящее от шума собственных крыльев. На самом же деле оказалось, что гортань животного устроена наподобие обычного свистка. Через этот «свисток» животное выдыхает из лёгких воздух с очень большой силой. Проходя через гортань, воздух рождает звуки очень высокой частоты – от 50 до 100 кгц


Рупором для испускаемого зверьком ультразвука служит открытый рот. Это заставляет звуковое излучение распространяться в одном направлении, в данном случае — в направлении полёта. Вполне логично использование именно ультразвука для эхолокации. Это объясняется тем, что размеры предметов, которые летучая мышь может обнаружить, зависят от длины волны. Если размеры предмета больше длины волны, то зверёк хорошо «слышит» предмет т. к. волна отражается так же хорошо, как луч света от большого зеркала. Если размеры объекта будут меньше или равны размеру волны, то животное посылает вторичные, дифрагированные звуковые волны, которые распространяются во всех направлениях от данного объекта. Отражённая звуковая волна, которая улавливается ушными раковинами, имеет меньшую энергию и, следовательно, зверёк понимает, что перед ним небольшой объект. 
В 1946 году советский учёный Е. Я. Пумпер выдвинул гипотезу, которая в дальнейшем была подтверждена на практике. Исходя из этой гипотезы, каждый последующий звук животное издаёт сразу же после принятия эха от предыдущего. Принятое эхо служит раздражителем, который и заставляет посылать следующий зондирующий сигнал. Также каждый последующий сигнал заставляет зверька увеличивать частоту издаваемых им импульсов. Это позволяет реагировать на быстрое изменение обстановки, устанавливать близость потенциальной добычи и препятствий. Интересно отметить тот факт, что сверхчувствительный «приемник» сигнала «выключается» в тот момент, когда летучая мышь испускает ультразвуковой сигнал. Скорее всего, это позволяет животному сберечь органы слуха от повреждающего действия «ультразвукового грохота». В последующем, О. Хенсон – анатом из Иельского университета установил, что у летучих мышей есть мышцы, которые позволяют ей закрывать уши в момент испускания сигнала. 
Таким образом, летучие мыши вооружены высокоточным природным радаром, который позволяет ей с лёгкостью маневрировать между ветвей деревьев, ловить добычу в кромешной темноте. Также этот радар позволяет получать информацию сразу о нескольких объектах, что делает его ещё эффективнее. 


Спустя десятилетия после открытия способностей летучих мышей конструкторы и изобретатели рвали когти, чтоб создать нечто подобное своими руками. Так, в 60-70е года ХХ в. многие исследователи придумывали концепты приборов, которые помогали бы незрячим людям ориентироваться в пространстве. 


Некоторые из этих приборов для слепых, дошли и до реализации. Но не сказать, чтобы они были особо успешны в коммерческом плане. Так или иначе, до сих пор технологию эхолокации стараются использовать везде, где только можно. Она прочно вошла в промышленность и ещё долгие годы будет являться основой для бионического дизайна различных приборов. 

Большое внимание учёных-биоников, которые занимаются разработкой локационных систем, привлекают не только летучие мыши, но и дельфины. 


Изучение эхолокации у дельфинов началось в 1947 году, когда американский зоолог Артур Мак-Бридж, который в тот период работал во флоридском аквариуме «Мериленд», заметил, что ночью дельфины с лёгкостью могут обходить сети, различные, другие препятствия, помещённые в водоём. Дельфины также с лёгкостью могут находить куски рыбы в кромешной темноте. Учёный выдвинул гипотезу о том, что эти китопарнокопытные, как и летучие мыши могут обладать эхолокационным  аппаратом. 
Одним из первых, кто детально изучил и задокументировал факт эхолокации у дельфинов, был Жак-Ив Кусто. Он описал свои наблюдения в книге «Безмолвный мир», которая была издана в 1953 году.  Каковы же механизмы работы эхолокационного аппарата дельфинов? 
Дельфины издают звуки с помощью носовых воздушных мешков, дыхательной трубки, гортани, легких и дыхала — органа, расположенного в верхней внутренней части головы и заполненного липидами низкой плотности. Для эхолокации дельфины издают ультразвуки, называемые «щелчками», проталкивая воздух между фоническими губами носовых ходов. Когда эти губы открываются и закрываются, окружающие ткани вибрируют и производят звуковые волны.

У дельфинов в голове есть орган, называемый дыхалом, или дыней, который позволяет передавать звуковые волны. Дыня концентрирует пульсации, которые издаёт дельфин, и посылает их вперёд. Основная «функция» этого органа — группировать звуки в пучки, производить и усиливать резонанс. После того как излучение выпущено вперёд, звуковые волны отражаются от предметов, находящихся в воде. Часть сигнала отражается от объектов и возвращается в виде эха к дельфину. Его мозг принимает звуковые волны в виде нервных импульсов, которые потом анализируются. Приемник возвращающихся звуковых волн находится в нижней челюсти, и зубы дельфинов работают как антенны для приема сигналов. Это очень сложная адаптация, жизненно необходимая для  выживания этих китопарнокопытных.
Случайный факт: Cуществует очень мало данных, которые можно использовать для прямого сравнения различий в эхолокационных способностях дельфинов и летучих мышей. Оба представителя животного мира имеют отличные эхолокационные способности, подходящие для своих сред обитания и типов своей добычи.  Однако, следует отметить, что скорость звука в воде примерно в пять раз выше, чем в воздухе. Данный факт должен  сильно повлиять на наше понимание того, как эти животные  используют свою «суперспособность».Так, летучие мыши в отличие от дельфинов вероятно имеют более  пластичную систему обнаружения жертвы. Это связано с  характеристиками получаемого сигнала, которые могут значительно меняться во время различных фаз последовательности преследования добычи. Жертвы летучих мышей, сами того не осознавая, как бы обманывают своих  преследователей, ибо медленная скорость звука в воздухе позволяет добыче перемещаться на некоторое расстояние между звуковыми излучениями, которые издаёт сам зверёк.  Возможно, летучим мышам необходимо извлекать больше определенных типов информации, таких как скорость и направление движения добычи, а также  время между всеми гребнями волн исходящие от неё. Такое поведение несет название компенсации доплеровского сдвига. Оно было обнаружено у некоторых летучих мышей и полностью отсутствует у дельфинов. Видимо морским обитателям охотиться проще нежели «летающим повелителям ночи».
Изучение эхолокации у летучих мышей и дельфинов позволило человечеству сделать значительный скачок в развитии локационной техники. Но эти животные и сегодня таят секреты, которые предстоит раскрыть и воплотить в виде технических решений. 

▍Гимнарх — электролокация



Эхолокация получила широкое распространение в живой природе, но это далеко не единственный метод ориентации в пространстве, которым «владеют» животные. Взгляды исследователей привлёк гимнарх — хищная рыба, обитающая в африканских реках. Эта рыба является отличным электролокатором. У гимнарха очень маленькие, почти незрячие глаза и наличие электролокации позволяет животному обходить препятствия и ловить «мяско». Орган электрического «зрения» гимнарха находится у него в голове и непосредственно связан с мозгом. Генератор электрических импульсов расположен в хвосте рыбы.
Во время охоты гимнарх постоянно испускает ритмичные электрические импульсы частотой около 300 в секунду и промежутками между разрядами в 2,3 мсек. В период генерации импульса полярность хвоста становится отрицательной по отношению к голове. Таким образом, рыба создаёт электрическое поле, похожее на аналог диполя. Любой предмет, попавший в эту зону, изменяет её напряжённость и нарушает распределения в ней силовых линий.  Подсчёты показали, что гимнарх способен «ощущать» даже очень слабые источники напряжения, которые создают поле до 0,03 мкв/см. Следовательно был сделан вывод, что электрорецепторы рыбы «замечают» изменения силы тока равное 3*10 -15 ампер.
Локатор гимнарха – высокоточный и совершенный «прибор», запатентованный самой природой, который может различить предметы одной формы, но разной электропроводности. Этим гениальным «изобретением» эволюции заинтересовались многие исследователи, в том числе и военные конструкторы. Они считают, что разгадка электролокации гимнарха поможет им решить задачу по эффективному обнаружению вражеских подлодок по изменению искусственно созданного электрического поля. 

▍Амфисбены и черви приампулиды – землеройные машины 




Одной из важных технических задач в наше время является разработка землепроходных машин. На помощь строителям туннелей, бурильщикам приходят исследователи бионики. Учёные демонстрируют нам «технические» решения в окружающей среде. Так, взгляд науки пал на амфисбен (двуходки) из семейства ящериц и беспозвоночных червей приапулид. 

Эти животные являются превосходными «землеройными машинами», которые с лёгкостью прокладывают себе путь в толще почвы. Амфисбены, которые обитают в тропической Америке и Африке, живут под слоем опавшей листвы, глубоко в земле и ведут роющий образ жизни. В связи с таким поведением их тело стало похоже на большого земляного червя.  Узкий подземный ход рептилия прокладывает, протискивая голову вперёд и при этом расталкивая частицы земли. Далее амфисбена с силой прижимает частицы почвы своим «затылком». Быстрые повторения таких движений и обеспечивают прокладку тоннеля для животного. 

Амфисбена — «землеройная машина»

Червь приапулида также является отличной «землеройной машиной», которая владеет весьма совершенным способом передвижения во влажном грунте. Приапулиды используют гидравлический способ передвижения. В качестве бурового инструмента черви юзают короткий, шипастый хоботок. Тело приапулид снабжено множеством продольных и кольцевых мышц. Учёные зоологи посчитали, что червячки массой 2 г. развивают усилие, которое в 40 раз превышает их массу. 

Черви приапулиды:



Оба эти примера из животного мира могут послужить источником новых технических идей в разработке инновационных землепроходных машин. 

▍Организмы – индикаторы загрязнения окружающей среды 



Теперь мы перейдем к рассмотрению самых оригинальных «живых приборов» — организмов-индикаторов. По сути, это генетическое устройство, поскольку при определенных уровнях загрязнения выживут только те организмы, которые генетически «запрограммированы»(дурацкое название, знаем) на адаптацию к изменениям окружающей среды, вызванные деятельностью человека. Биологические индикаторы могут рассказать нам о многом: где накапливаются вредные вещества, как они влияют на всю экосистему и какова скорость изменений. Химический и физический анализ может рассказать нам о накопленных концентрациях веществ, вредных для биомов, но он ничего не скажет нам о тенденциях дальнейшего загрязнения и его биологических последствиях. Здесь могут помочь биологические индикаторы. Так, в систему индикаторных организмов включают самые разнообразные группы. Это и мокрицы, и дождевые черви, и даже почвенные простейшие.
Почти во всех пресноводных водоемах обитают космополитические виды, способные выживать в определенных загрязненных условиях. Это позволило создать шкалу сапробности, то есть степень загрязнения определенных водоемов или их участков органическими веществами, в которых способны выживать определенные организмы. На основе шкалы сапробности загрязнение воды было разделено на четыре зоны: полидендритная, альфа-дендритная, бета-дендритная и олигодендритная.
Изучение организмов индикаторов с позиции бионики может стать основой для создания высокоточных приборов, которые смогут быстро реагировать на изменения окружающей среды.  Однако, следует подчеркнуть, что некоторые виды животных, которые ранее не приживались в загрязненных водоемах уже вполне могут адаптироваться к жизни в них и потому они не всегда являются достоверным индикатором биологической чистоты водоемов.

▍Лист растения — солнечная батарея



В погоне за альтернативными источниками энергии учёные не обошли стороной и царство растений.
Особое внимание привлекает процесс фотосинтеза. Американским физикам удалось создать солнечные батареи, которые дешево и эффективно преобразуют атмосферный углекислый газ в углеводородное топливо, используя энергию света и воду.
Солнечный элемент преобразует свет в движение электронов, и заставляет катализатор расщеплять углекислый газ на O и CO. По словам учёных, их «лист» уже работает при обычном солнечном свете и не требует концентрированного света, как многие другие фоторасщепители воды и углекислоты.

▍Вывод:


Приведенные примеры далеко не полностью показывают разнообразие «технических решений», которыми овладели живые организмы, но могут подтолкнуть начинающих исследователей к разработке каких-нибудь футуристических проектов. 

Кто первым назовёт этот фильм в комментариях, получит бесплатный билет на организуемое нами мероприятие в г. Санкт-Петербурге, в котором звёздами выступят Станислав Дробышевский, Зелёный Кот и Упоротый Палеонтолог.

Глядишь, создадут какой-нибудь бионический дизайн супер таракана киборга и заселят этими тварями марс, а там и колонизация красной планеты, как в одном японском фильме с баталиями и фантастическими приключениями. Это шутка, конечно, но чем летучая мышь не шутит? Так или иначе, овладение тайнами биологии, что очевидно, помогает создавать энергетически эффективные машины. А далее как говорится, время покажет! До новых встреч!

▍ЛИТЕРАТУРА:


  1. Бионика — И. Б. Литенецкий, 1976 
  2. Introduction to Neuroscience: Behavioral Neuroscience Introduction to Neuroscience: Behavioral Neuroscience. Echolocation in Bats 
  3. DOLPHIN ECHOLOCATION
  4. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid

THE ACTIVITY AND FUNCTION OF THE MIDDLE-EAR
MUSCLES IN ECHO-LOCATING BATS
BY 0. W. HENSON, JR
From the Department of Anatomy, Yale University,
New Haven, Connecticut, U.S.A.
(Received 22 March 1965)

P/s мы проводим интересное мероприятие, подробности о нём можно почитать тут.

Комментарии (52)


  1. VoronaDragon
    16.02.2022 16:11
    +2

    Осталось прикрутить мини-датчки и написать приложение, и все, задел на биопанк готов!


  1. phanerozoi_evidence Автор
    16.02.2022 16:16
    +2

    Если кого заинтересуют подробности о нашем мероприятии, в котором выступят очень известные ученые и научные популяризаторы, то переходите по данной ссылке


  1. Jury_78
    16.02.2022 16:19
    +1

    Захват происходит кристаллами люминофора.

    Это новое? Раньше использовали газоразрядные трубки.


    1. phanerozoi_evidence Автор
      16.02.2022 17:33
      +2

      Их всяких много на рынке. Мне знаком с люминофором


      1. KbRadar
        16.02.2022 20:53
        +3

        Прибор должен быть сцинтилляционным! (с)


        1. phanerozoi_evidence Автор
          16.02.2022 23:32
          +1

          Надо уточнить, что за детектор, а то да под одну гребенку все получились=). С компьютера уточню.


        1. steanlab
          17.02.2022 16:14
          +1

          Странно что с этой фразой еще не начали майки мерч продавать :)) Кстати по личному опыту, чаще других ее употребляют почему-то «трубководы», владельцы приборов с цилиндрическими ГМ счетчиками. Визуализация, что ли :)



    1. Am6er
      16.02.2022 21:05
      +3

      Мда. Лучше почитайте матчасть. Электроны ничего не "захватывают", если вы имели ввиду фотоэффект.


      1. phanerozoi_evidence Автор
        16.02.2022 23:09
        +3

        После нагревания эти кристаллы выпускают захваченные ими электроны в виде света

        в люминофоре центры радиофотолюминесценции, люминесцируют под действием света. Под действием излучения электрон переходит в зону проводимости и захватывается. Если в тексте сказано, что электроны что-то захватывают, то укажите пожалуйста где, я поправлю. Возможно опечатался


        1. Jury_78
          17.02.2022 10:00

          захваченные ими электроны в виде света

          Электроны переходят в кванты света?


          1. phanerozoi_evidence Автор
            17.02.2022 18:41

            Про дозиметры информацию писал Евгений. Уточнил у него, что он имел ввиду и вот ответ:


  1. aleksandr99
    16.02.2022 16:45
    +2

    Terafomazu - Терраформирование 2016


    1. phanerozoi_evidence Автор
      16.02.2022 17:32

      Напишите в лс=)


  1. mister_pibodi
    16.02.2022 19:41
    +1

    Вроде как человек тоже понимает, что он под излучением когда видит светящиеся точки перед глазами (что то такое было про космонавтов). В случае таракана это наверное ощущается как огромный фонарь направленный на глаз и интерпретируется как огонь или другое опасное явление.


    1. ilmarinnen
      17.02.2022 08:53
      +2

      Про космонавтов на МКС была следующая история. Сразу после весьма сильной вспышки на Солнце они заметили что иногда, закрыв глаза они фиксировали короткие точечные вспышки в поле зрения.

      Доктора потом пояснили, что это непосредственно нервные окончания возбуждались а момент попадания на них ионизирующих частиц. И что ничего хорошего в этом нет, тоже пояснили.


      1. Ndochp
        17.02.2022 18:45

        Я читал про свет в момент торможения частицы в глазном яблоке, а не про реакцию нервов на сами частицы.


        1. LevPos
          18.02.2022 08:35
          +1

          Космонавты наблюдают световые вспышки

          Вспышки наблюдались, когда заряженные частицы проходили через центральные отделы сетчатки глаза

          Эффект отсутствовал, когда частицы проходили через стекловидное тело и хрусталик глаза или через затылочную часть мозга, где находится корковый центр зрительного анализатора

          Весьма интересен эксперимент, в котором получали эффект свечения с помощью рентгеновских лучей. По сравнению с корпускулярным излучением пришлось примерно в 250 раз увеличить мощность дозы рентгеновского излучения, чтобы экспериментаторы ощутили в поле зрения равномерное серое свечение. При этом для того, чтобы обеспечить радиационную безопасность, пришлось значительно снизить время облучения. Таким образом, оказалось, что корпускулярное излучение во много раз эффективнее, чем рентгеновское, воздействует на сетчатку глаза.


  1. RealBeria
    16.02.2022 20:07
    +2

    Отличная интересная статья! только немного грустно от того, что авторы помимо создания очень качественного материала вынуждены еще и защищаться от хейтеров.


    1. phanerozoi_evidence Автор
      16.02.2022 23:40
      +2

      Спасибо за поддержку. В принципе хейта особого нет. Один по рекламе, один по нетемату и один низкий технический материал. Да и мне уже все равно на хейт. Хабр даёт хорошую школу не вестись на провокации


  1. 3epka
    16.02.2022 21:21
    +1

    Последняя картинка - аниме Terra Formars (в русском переводе - Аниме Терраформирование) (вот я тормоз)


    1. phanerozoi_evidence Автор
      17.02.2022 00:03

      Вы второй человек отгадавший. Поскольку первый человек не сможет приехать, то мы можем вас записать и позже отправить электронный билет. Напишите мне в личку пожалуйста


    1. Squoworode
      17.02.2022 19:59
      +1

      аниме

      Ах, если бы... Это фильм с настоящими трёхмерными тараканами людьми.


  1. VT100
    16.02.2022 23:58
    +1

    Эта статья — хуже предыдущих. Подробностей либо нет (приапулиды), либо мало (тараканьи глаза), либо с ошибками (летучие мыши не закрывают уши при "крике", а отводят кости среднего уха друг от друга).


    1. phanerozoi_evidence Автор
      17.02.2022 11:19
      +2

      с ошибками (летучие мыши не закрывают уши при "крике", а отводят кости среднего уха друг от друга).

      во-первых, ошибки нет, ибо в нашей статье написано, что у летучих мышей есть мышцы, которые позволяют ей закрывать уши в момент испускания сигнала. Имеется ввиду закрытие среднего уха по средством напряжения стремянной мышцы. Мой косяк, что я не добавил оригинальный источник. Исправился добавил, ознакамливайтесь.Если у вас есть источник опровергающий, или дополняющий данные О.Хенсона, будьте добры предоставьте, чтобы мы дополнили статью. Благодарю за любезность. Говорить, что ошиблись мы— не правильно, ибо есть конкретное исследование. Конечно исследование могли опровергнуть и сейчас все может считаться по-другому, но в силу того, что у нас была статья Хенсона, а опровержение мы не нашли, то мы использовали те данные, которые у нас были:

      that pulses are
      normally emitted at these fast rates and since the echoes are relatively loud
      at this time the attenuation may not interfere with echo perception. In
      fact, some degree of stapedius muscle contraction may be beneficial for
      the analysis of echoes, especially during the terminal phase when sound
      pressures of echoes returning to the ear may well rise above 70 db. This is
      suggested by the fact that the stapedius muscle reflex threshold in Tadarida
      is normally exceeded when sound pressures of this magnitude stimulate
      the ear. Also, in cases of stapedius muscle paralysis in man, an irritability
      for normal sounds may develop if the sound pressures are 70 db or more;
      the spoken voice (as heard through a telephone) for instance, may become
      indistinct, uncomfortably loud, and annoying (Perlman, 1938). In this
      respect it is interesting to note that vampires, frugivorous and nectar
      feeding phyllostomatid bats and others which generally fly close to large
      obstacles characteristically emit faint pulses, and also, that loud bats
      reduce the intensity of their pulses during the terminal phase. This suggests
      that loud echoes are not desirable and that different mechanisms may be
      used to reduce echo intensity under certain conditions.
      Assuming that the magnitude and recovery time of results of this investigation generally support Hartridge's (1945)
      hypothesis that the middle-ear muscles of bats contract during the
      emission of each ultrasonic pulse and relax between pulses so that the ear
      is protected and maintained in a sensitive state for the perception of
      echoes. At pulse repetition rates employed by bats during the search and
      approach phases, the stapedius muscle seems well adapted to perform this
      function. By being strongly contracted before the emission of each pulse,
      the stapedius muscle can relax as the pulse begins and still provide protection when the peak sound pressures are emitted. Furthermore, since the
      muscle relaxes over the duration of each cry, the echo energy is more
      efficiently transferred across the middle ear than is the preceding pulse
      energy, provided, of course, that the echo returns before contractions
      preceding the next cry begin.
      As mentioned previously, Hartridge's theory has not been widely
      accepted on grounds that it did not seem probable that the muscles could
      contract and relax at very rapid rates without attenuating the echoes
      (Griffin, 1958; Grinnell, 1963b). To be sure, the results show that as the pulse repetition rate rises above 50/sec, the time available for the stapedius
      muscle to contract before, and relax after, each pulse decreases until, at
      pulse repetition rates of about 140/sec, the muscle appears to remain
      tonically contracted while an entire series of pulses is emitted. At very
      fast pulse repetition rates (140 and above), stapedius muscle contractions
      would, therefore, attenuate both the outgoing cries and the returning
      echoes. It is only during the terminal phase, however, that pulses are
      normally emitted at these fast rates and since the echoes are relatively loud
      at this time the attenuation may not interfere with echo perception. In
      fact, some degree of stapedius muscle contraction may be beneficial for
      the analysis of echoes, especially during the terminal phase when sound
      pressures of echoes returning to the ear may well rise above 70 db. This is
      suggested by the fact that the stapedius muscle reflex threshold in Tadarida
      is normally exceeded when sound pressures of this magnitude stimulate
      the ear. Also, in cases of stapedius muscle paralysis in man, an irritability
      for normal sounds may develop if the sound pressures are 70 db or more;
      the spoken voice (as heard through a telephone) for instance, may become
      indistinct, uncomfortably loud, and annoying (Perlman, 1938). In this
      respect it is interesting to note that vampires, frugivorous and nectar
      feeding phyllostomatid bats and others which generally fly close to large
      obstacles characteri....

      Во-вторых, подробности о приапудидах рассказаны в её биологии, разводить на три страницы— раздувать статью донельзя. Это обзорная статья, которая итак получилась большой.


      1. VT100
        17.02.2022 17:07
        -1

        С точки зрения homo — "закрыть уши", это "закрыть отверстия наружного слухового прохода". И это, кстати, — не поможет из-за наличия евстахиевой трубы.
        Мыши блокируют передачу колебаний именно на уровне косточек среднего уха, о чём и предполагает O. W. Henson. Более того — именной той косточки, что непосредственно связана с улиткой.


        1. phanerozoi_evidence Автор
          17.02.2022 18:09

          1) Речь не о Homo совсем

          2) У меня есть все работы Хенсона— можете назвать меня его фанатом. И знаете, я ни в одной работе не нашел прямого упоминания косточек. Там есть только про мышцы. Во всех его статьях сказано, что именно мышцы закрывают проход. Это написано и в обзоре статьи от 2018 года, где ставится под сомнение эффективность мышцы, но говорится о генах, а не о косточках. Кстати говоря, как двигала бы мышь крсточки? Наверное с помощью мышцы

          3) Я не буду дополнять нашу статью вашими словами, ибо мне необходим научный источник, а если его нет, то извините, ибо ни в наших учебниках, ни в научных статьях Хенсона нет той информации, которую утверждаете вы. Предоставите, статью дополню.


    1. phanerozoi_evidence Автор
      17.02.2022 15:41

      Кстати говоря, в 1-м источнике у нас указана книга "Бионика — И. Б. Литенецкий, 1976 ". Там мы тоже нашли цитирование оригинальной работы господина Хенсона

      Бионика


  1. jar_ohty
    17.02.2022 03:39
    +7

    Про то, что тараканы «видят» радиацию глазами, я еще с детства читал во всякого рода научно-популярных книжках для детей. А сейчас я раскопал первоисточник. Baldwin W.F., Sutherland J.B., Habowsky J.E.J. Effects of X-rays on electrical activity in the eye of the cockroach Blaberus giganteus // Nature, 1963, V.199. P.616. Прошу обратить внимание на мощность дозы рентгеновского излучения в этом эксперименте: 2000 Р/мин. Колоссальная интенсивность излучения и было бы удивительно, если бы глаз каким-либо образом не среагировал на нее. Это к слову о «высокочувствительном счетчике Гейгера», который на деле оказывается очень низкочувствительным. Кстати, этот У.Ф. Балдвин в свое время очень активно занимался действием ионизирующих излучений на насекомых.


    1. Xeldos
      17.02.2022 07:43
      +1

      Вот мне сомнительно было - зачем таракану видеть радиацию? Убегать с ЧАЭС?


      1. bbs12
        17.02.2022 14:01
        +1

        Скорее всего это побочный эффект, незадекларированная функция глаза, вряд ли здесь было какое-то прямое эволюционное влияние.


        1. Xeldos
          17.02.2022 16:26

          И что, эволюция за миллионы лет это не оптимизоровала? Совсем ничего не стоит?


          1. phanerozoi_evidence Автор
            17.02.2022 19:17

            Эволюция хаотична и у нее нет цели оптимизировать что-то


            1. Xeldos
              17.02.2022 21:21

              Это мутации хаотичны. А эволюция совсем даже нет.


      1. phanerozoi_evidence Автор
        17.02.2022 14:26

        Можно назвать это преадаптацией, так как глаз заточен был изначально под другое. Маловероятно, что радиация оказала прямое влияние. Солидарен с мнением выше


    1. Vsevo10d
      17.02.2022 08:58

      А, ну то есть там было достаточно излучения, чтобы присутствовали частицы любых энергий, в том числе может быть даже и вторичная наведенная радиация, чтобы энергия какой-нибудь частицы да совпала с энергией, возбуждающей светочувствительный рецептор.

      А живой таракан в принципе мог убегать и из-за воздействия на какие-нибудь ноцицепторы или банального тепла, от такого мощного излучения-то. Спасибо.


      1. LevPos
        17.02.2022 10:17
        +2

        Таракан там в принципе убегать не мог:

        Записывалась электрическая активность глаза.


        1. YNK
          17.02.2022 11:36
          +1

          Вообще-то...особенность организации нервной системы насекомых состоит в том, что она сильно компактифицирована, за счет этого управляющие центры и актуаторы движения на коротком поводке. Ядра нервных центров отвечающих за когнитивные акты имеют протяженные нейропили (жгуты из отростков нейронов) достигающие топической локации ядер ответственных за локомоцию непосредственно в ногах. Так что, если на сенсорах тараканов возникает возбуждение в ответ на раздражение светом то их ноги приходят в движение почти сразу же вслед за обнаружением раздражения, потому что импульс от сенсора проходит через зрительный нервный центр и буквально тут же достигает узлов управления ногами. Таракан сначала начинает движение, а потом уже на бегу включается распознавание "куда бежать" прочь от света.


          1. phanerozoi_evidence Автор
            17.02.2022 12:19

            Вообще-то...особенность организации нервной системы насекомых состоит в том, что она сильно компактифицирована, за счет этого управляющие центры и актуаторы движения на коротком поводке. Ядра нервных центров

            дело не в ЭТОМ. Таракан реально не мог убежать, грубо говоря его пытали. Он был зафиксирован, пока на нем испытывали X-RAY. Не лучшая участь для таракана.


      1. phanerozoi_evidence Автор
        17.02.2022 12:20

        А живой таракан в принципе мог убегать и из-за воздействия на какие-нибудь ноцицепторы или банального тепла, от такого мощного излучения-то. Спасибо.

        Там использовали исключительно определенный тип излучения и таракан убегать вообще не мог, как бы он не хотел.


    1. phanerozoi_evidence Автор
      17.02.2022 12:16

      Исследования проводились 1955 по 1970 годы насколько я помню. В 1963 году вышла первая статья, которая фиксоровала высокие уровни радиации, однако тараканы фиксировали уровни радиации на много ниже. В 1965 году вышла еще одна статья свидетельствующая, что глаза таракана ощущает даже слабые дозы радиации. У автора была на самом деле не одна статья по поводу тараканов этого рода. Как вы и сказали он занимался подобными исследованиями и на других насекомых, но чувствительность к радиоизлучению испытывали в основном сумеречные и ночные насекомые. Другие же насекомые не подтверждали реагирование на малые и высокие дозы радиации.


      1. jar_ohty
        17.02.2022 20:46
        +1

        К сожалению, нет доступа ко всей статье… Но что-то подсказывает мне, что и здесь у нас низкие дозы образуются высокой интенсивностью излучения при коротком времени воздействия (в эксперименте используется затвор, пропускающий излучение в течение миллисекунд или даже долей миллисекунды). А в таком случае может иметь значение не доза, а интенсивность.


  1. LevPos
    17.02.2022 07:58
    +2

    Была радиопередача и книги КОАПП (Комитет охраны авторских прав природы), рассказывали про такие изобретения.


    1. VT100
      17.02.2022 17:02

      "Особо Активной Помощи"?


      1. LevPos
        18.02.2022 08:24
        +2

        В 1984—1990 гг. на творческом объединении «Экран» снят цикл из 18 кукольных мультфильмов по мотивам произведений М. Константиновского (в упрощённой, адаптированной для дошкольников версии). Здесь аббревиатура КОАПП расшифровывалась как Комитет Особо Активной Помощи Природе.


  1. webdi
    17.02.2022 09:46
    +1

    Прикольно.) Такие вот сами собой эволюционно возникшие суперинструменты.))


  1. JYE
    17.02.2022 12:10

    Фильм "Планета тараканов"


    1. phanerozoi_evidence Автор
      17.02.2022 12:38

      Нет. Терраформирование. Выше уже писали.


  1. steanlab
    17.02.2022 16:11
    +1

    За «дозиметр» отдельное спасибо! Тема наболевшая :))
    Можно кстати поднять источник от уважаемого jar_ohty в статью.


    1. phanerozoi_evidence Автор
      17.02.2022 18:16
      +1

      @steanlab Это тебе спасибо. Ты собственно и вдохновил тогда, тем вопросом и мы усердно искали информацию. Конечно много не нашли. Все в основном заканчивается как раз 70ми годами и обзорами 2018 года по влиянию радиации за все года. Статью добавлю в источники. Большое спаcибо @jar_ohty


      1. steanlab
        17.02.2022 18:33
        +1

        Я тоже завел в Trello доску и закидываю в нее все, что связано с темой «радиация+насекомые+биоиндикаторы». Так что твоя статья туда уже уехала. Тема достаточно продвинутая, и имхо вполне может подкинуть идей для мастеров soft robotics


        1. phanerozoi_evidence Автор
          17.02.2022 19:18

          Хех. Круто. Спасибо))